Найти в Дзене
Домашняя школа

Вычисление в пределах 20 с переходом через десяток . 3 часть

Сложение и вычитание с переходом через разряд представляет наибольшие трудности для учащихся . Трудности связаны с тем, что сразу происходит актуализация ранее полученных знаний, их упорядочение и последовательное выполнение ряда логических операций. Чтобы сложить числа 7 и 5, нужно выполнить следующие операции: 1. Разложить второе слагаемое (5) на два числа так, чтобы одно из них дополняло первое слагаемое до 10. 2. Дополнить первое слагаемое до 10, т. е. прибавить к первому слагаемому (7) одно из чисел, на которое разложили второе слагаемое (т.е. 3). 3. К полученному числу (10) прибавить оставшееся число (2). Учащиеся затрудняются, во-первых, в разложении второго слагаемого, так как, чтобы его разложить, нужно произвести мысленно две операции: а) определить, сколько единиц недостает в первом слагаемом до десятка; б) разложить второе слагаемое. Вторая трудность заключается в том, чтобы удержать в памяти число, которое осталось после дополнения первого слагаемого до десятка, наприм

Сложение и вычитание с переходом через разряд представляет наибольшие трудности для учащихся . Трудности связаны с тем, что сразу происходит актуализация ранее полученных знаний, их упорядочение и последовательное выполнение ряда логических операций.

Чтобы сложить числа 7 и 5, нужно выполнить следующие операции:

1. Разложить второе слагаемое (5) на два числа так, чтобы одно из них дополняло первое слагаемое до 10.

2. Дополнить первое слагаемое до 10, т. е. прибавить к первому слагаемому (7) одно из чисел, на которое разложили второе слагаемое (т.е. 3).

3. К полученному числу (10) прибавить оставшееся число (2).

Учащиеся затрудняются, во-первых, в разложении второго слагаемого, так как, чтобы его разложить, нужно произвести мысленно две операции: а) определить, сколько единиц недостает в первом слагаемом до десятка; б) разложить второе слагаемое.

Вторая трудность заключается в том, чтобы удержать в памяти число, которое осталось после дополнения первого слагаемого до десятка, например: 7+5. Учащиеся дополнили 7 до 10, но не помнят, сколько же нужно прибавить к 10.

Вычитание с переходом через десяток (12--5) тоже требует ряда операций:

1. Уменьшаемое разложить на десяток и единицы.

2. Вычитаемое разложить на два числа, одно из которых равно числу единиц уменьшаемого.

3. Вычесть единицы.

4. Вычесть из десятка оставшееся число единиц. Учащихся вспомогательной школы в основном затрудняет выполнение третьей и четвертой операций.

Требуется большая подготовительная работа, тщательный подбор материала от легкого к трудному, использование наглядности, достаточное количество упражнений, которые бы помогли учащимся овладеть навыками решения примеров данного вида.

Подготовительная работа должна заключаться в повторении:

а) таблицы сложения и вычитания в пределе 10;

б) состава чисел первого десятка (всех возможных вариантов из двух чисел), например: 7=6+1, 7=1+6, 7=5+2, 7=2+5, 7=4+3, 7=3+4;

в) дополнения чисел до десяти: 10=3+..., 10=5+..., 10=8+..., 10=3+..., 10=... + ... и т. д.;

г) разложения двузначного числа на десятки и единицы; д) вычитания из десяти однозначных чисел;

е) рассмотрения случаев вида 17--7, 15--5.

9+1 = 10

12-2 = 10

10+1 = 11

10-1= 9

9+1 + 1 = 11

12-2-1=9

Эта подготовительная работа должна проводиться систематически из урока в урок, задолго до решения примеров данного вида. Последовательность случаев может быть различной. Существует два варианта:

1. Первое слагаемое и уменьшаемое постоянны, а второе слагаемое и уменьшаемое увеличиваются на 1:

9+2 8+3 7+4 11-2 12-3

9+3 8+4 7+5 11-3 12-4

9+4 8+5 ... 11-4

7+9

9+9 8+9

2. Первое слагаемое и уменьшаемое меняются, увеличиваясь на 1, а второе слагаемое и вычитаемое постоянные:

Объяснение выполнения сложения и вычитания проводится с использованием пособий и подробной записью. При выборе пособий необходимо учитывать, что учащиеся должны видеть необходимость добавления первого слагаемого до десятка при сложении и разложении уменьшаемого на десятки и единицы при вычитании. Удобными пособиями являются бруски и кубики арифметического ящика, абак, счеты.

Сложим 8+3. Откладываем на пособии (абаке, полосах) первое слагаемое и добавляем его до десяти. Десять единиц заменяем десятком. К десятку прибавляем оставшиеся единицы:

8+3=11

3=2+ 1

8+2 = 10

10+1 = 11

На этом этапе полезно решение примеров вида

8+2+5 8+7

8+7 8+2+5

Полезно также, особенно для наиболее слабых учащихся, решение примеров с частичным использованием пособий, например: 7+5. Ученик берет 5 предметов (второе слагаемое 5) и рассуждает так: к 7 прибавить 3, будет 10 (отнимает от 5 предметов 3), осталось прибавить 2:10+2=12. В этом случае ученик помогает себе с помощью пособий разложить второе слагаемое и удержать в памяти оставшуюся часть.

Как вычесть из 11 число 2? На абаке откладываем 11. Надо вычесть 2. Вычитаем 1, осталось вычесть еще 1. 1 десяток заменяем 10 единицами. Из 10 единиц вычитаем 1. Остается 9.

-2

По аналогии со сложением рассматриваются случаи вычитания:

14-4-2

14-6

Учитель ставит вопросы: «Сколько единиц вычли сначала? Сколько потом? Сколько всего единиц вычли?» В дальнейшем учащиеся самостоятельно должны пояснять проговариванием громкой речью всё умственные действия. Так же как и при сложении, можно позволить учащимся вычитаемое изображать на пособиях и убирать определенное количество предметов при последовательном вычитании. (Иногда можно наблюдать, как учащиеся сами рисуют палочки на бумаге, а по мере вычитания зачеркивают их.) Например, 12--6. Откладывается 6 кругов (вычитаемое), и ученик рассуждает: «Сначала из двенадцати вычтем 2, будет 10 (убирает 2 круга), осталось вычесть 4: 10--4=6». Так же как и во всех предыдущих случаях, соответствующие случаи сложения и вычитания необходимо сопоставлять. Полезно сопоставлять ответы специально подобранных примеров целого столбика: решить и ответить на вопросы, почему ответы в примерах первого столбика увеличиваются, а в примерах второго уменьшаются.

9+3

9-3

9+4

9-4

9+5

9-5

В упражнения необходимо включать примеры с тремя компонентами: 8+7+3, 17--4--8, 5+9--6, а также примеры, одним из компонентов которых является нуль, например: 19--9, 20--0, 15--15 (нуль в ответе). Хорошо сравнить решение примеров, компонентами или результатами которых являются нуль и единица: 15-1, 15-15, 15-0, 15-14.

Примеры на сложение следует чередовать с примерами на вычитание. При решении сложных примеров необходимо выработать привычку анализировать предлагаемый пример. Учить школьников планировать мыслительные действия, развивать ориентировочную основу познавательной деятельности. Этому способствуют вопросы такого характера: «Сколько действий надо выполнить? Какие это действия?» Следует шире использовать составление примеров по данному:

7+8=15

8+7

15-8

15-7

Так же как и при изучении действий в пределах 10, надо предъявлять и такие примеры: 3--13, 12--15 -- с целью выяснить, возможно ли вычитание. При предъявлении пар примеров 5+15 и 5--15 (0+15 и 0--15) следует требовать объяснений, почему первый пример решить можно, а второй -- нельзя. Подобные задания постепенно вырабатывают у учащихся привычку анализировать числа, прежде чем приступать к выполнению действий. Для запоминания таблиц сложения и вычитания полезно решение примеров с неизвестным компонентом, составление нескольких примеров с данным ответом.

Таблицы сложения и вычитания заучиваются наизусть.

-3
-4
-5
-6

-7
-8
-9
-10
-11
-12

-13
-14
-15
-16
-17
-18
-19
-20
-21
-22
-23
-24
-25
-26
-27
-28
-29
-30
-31
-32
-33
-34
-35
-36
-37
-38
-39
-40
-41
-42
-43
-44
-45

-46
-47
-48
-49
-50
-51
-52
-53
-54
-55
-56
-57
-58
-59
-60
-61
-62
-63
-64
-65
-66
-67
-68
-69
-70
-71
-72
-73
-74
-75
-76
-77
-78
-79
-80
-81
-82
-83
-84
-85
-86
-87
-88
-89
-90
-91
-92
-93
-94
-95
-96
-97
-98
-99
-100
-101
-102
-103
-104
-105
-106
-107
-108
-109
-110
-111
-112
-113
-114
-115
-116
-117
-118
-119
-120
-121
-122
-123
-124
-125
-126
-127

Материал взят из учебников