Схемы
Если вы хотите разобраться в принципе работы машины, то лучшим способом это сделать, будет разобрать её, заглянуть внутрь, своими глазами увидеть все движущиеся детали и понять, как она работает. Вторым способом будет изучение документации с обилием картинок и пояснений о взаимодействии всех узлов и агрегатов.
Компьютер тоже машина, но единственное, что в нём движется – это невидимое и тихое электричество. В общем, смотреть внутрь компьютера совсем не интересно, так как визуально, в нём ничего не происходит.
На самом деле, устройство и изготовление отдельных частей компьютера – это очень интересный предмет. Но здесь мы ограничимся лишь тем, что в начале процесса имеется кремниевая пластина, затем после различных химических реакций, металлизации и резки, получается полупроводниковая пластина с маленькими квадратными кристаллами – «Чипами».
На этих чипах нанесены все необходимые логические элементы. Каждый такой чип помещают в пластиковый корпус и подключают к нему металлические ножки – «Выводы». На выходе готовой продукции получается микросхема.
Вот так под микроскопом выглядит знаменитый процессор MOS6502.
Структура настоящего чипа довольно сложная и крайне загромождена. Разобраться с принципом действия устройства, таким образом, будет крайне затруднительно. Да и опять-таки, электричество или признаки его деятельности мы всё равно не увидим.
Поэтому остаётся лишь один способ – изучение схемы.
Запомни это!
Скорее всего, вы слышали о компьютерной памяти. Итеперьмы узнаем, что она из себя представляет. Поскольку единственное, что есть внутри компьютера, это биты, их состояние (включены или выключены) и изменение их состояния, то память может «запоминать» только эти простые вещи. Сейчас мы узнаем, как это происходит.
Следующая схема отображает один бит компьютерной информации. Сохранить бит можно с помощью очередного трюка с логическим элементом И-НЕ. Мы посмотрим, как это работает в данном примере, затем в целом блоке таких элементов, где можно сохранить уже большее количество полезной информации.
В целом, эта комбинация имеет два входа и один выход. Вход ‘i’ отвечает за ввод бита, который нужно запомнить. Вход ‘s’ служит для сообщения, когда нужно запоминать бит. Выход ‘o’ служит для вывода бита из памяти.
Итак, что мы получили? Если ‘s’ включен, ‘o’ повторяет всё, что приходит на ‘i’, а если ‘s’ выключен, ‘o’ остаётся в последнем состоянии, независимо от того, что происходит на ‘i’. Вот так и устроена вся память компьютера. Она призвана помнить состояние битов в определённый момент. Думаю, теперь вам ясно, как работает память компьютера. Поэтому мы больше не станем прибегать к такой громоздкой схеме, а станем использовать схему попроще:
Здесь ‘s’, ‘i’ и ‘o’ так же означают: «разрешение записи», «вход записываемого бита» и «выход записанного бита», соответственно. ‘M’ – значит «Память» (Memory - англ. «Память»). Всё опять просто. Не правда ли?
Что делать с битом?
Теперь мы знаем, как сохранить бит и как его потом «вспомнить». И что теперь с этим делать? С помощью бита можно что-либо включить или выключить. Например, в памяти кофе-машины есть три бита, отвечающие за приготовление определённого вида кофе и в зависимости от того, какой бит мы включим, она приготовит нам один определённый вид кофе из трёх. Сам по себе бит ничего не значит. Чтобы от его состояния что-то зависело, нужно чтобы при определённом его значении запускалось что-то извне, какой-то следующий в схеме механизм или алгоритм. Бит может быть предназначен для чего угодно. А вот для чего именно, должен решить кто-то другой. Так с помощью одного бита можно регулировать пешеходный светофор: бит включен – светофор зеленый, выключен – красный. Казалось бы, бит влияет на движение пешеходов по зебре, но на самом деле всё не совсем так. Люди реагируют на сигнал светофора, а тот в свою очередь, срабатывает благодаря специальному устройству, которое считывает тот самый бит, в котором просто хранится одно из двух состояний. Вот так один маленький бит может запустить целую цепь событий и взаимодействий механизмов. При всём этом сам бит ничего не делает, только хранит определенное состояние.
Как розу ты не назови...
Прежде всего, начнём с небольших изменений в некоторых названиях. Мы уже знаем, что в компьютере везде используется принцип присутствия либо отсутствия электричества. И мы называли эти состояния «включено» и «выключено». Несмотря на то, что эти слова короткие и простые, для этих двух состояний придумали названия ещё проще и короче. Теперь мы будем «выключено» называть 0, а «включено» будем называть 1. Конечно, в некоторых моментах удобнее будет говорить именно «включено» или «выключено», но в основном куда удобнее использовать 1 и 0. Например, таблица истинности нашего старого знакомого И-НЕ выглядит так:
Здесь нужно уточнить, что с этого момента ничего не изменилось и внутри компьютера никаких цифр не появилось. Мы просто говорим 1, подразумевая «ВКЛ» и говорим 0, подразумевая «ВЫКЛ». Это просто общепринятое обозначение. Именно это, кстати говоря, и изображается на кнопках включения электрических приборов:
Вот видите, если на кнопке чайника написано 1 и 0, то это совсем не значит, что внутри него есть какие-то цифры.
Восемь - достаточно
Чтобы сохранить нечто большее, чем просто «Да» или «Нет», давайте создадим блок из восьми простейших битов памяти. У каждого бита есть свой собственный вход данных и собственный выход, а все разрешающие контакты соединены одним проводом. Слева подробная схема соединения однобитной памяти. Справа все тоже самое, только имеет упрощенный вид (проще чертить и проще читать).
Уданной сборки есть своё собственное название «Байт» (англ. Byte – укус). Поэтому на сборке справа буква ‘B’. Естьнесколько противоречивых историй возникновения этого названия. Но мы можем точно сказать, что у первых компьютерных дизайнеров явно было чувство юмора, так как единица информации названа бит/bit – чуток, полубайт/nibble (4 бита) – щипок, байт/byte(8 бит) –укус.
Если раньше у нас был всего один бит, а его состояние «выключено» мы теперь называем 0, то теперь у нас есть целый байт, одно из состояний которого можно записать так: 0000 0000. Теперь понимаете, почему мы перешли на 0 и 1?
Зачем же нужен байт? Когда мы используем всего один бит, мы можем получить всего два варианта сохраняемой информации: 0 или 1. А теперь представим, что у нас сборка из двух бит. Теперь у нас куда больше вариантов:
Был один бит с двумя состояниями, стало два бита с четырьмя. Т.е. 00, 01, 10 и 11. На самом деле, количество вариантов (информации) можно посчитать по простой формуле: 2^количечтво бит в сборке. Т.е. в сборке из двух бит 2^2=4. Сходится? Заранее можно посчитать, что три бита дадут нам 2^3=8 вариантов, четыре бита в сборке дадут 2^4=16, а восемь бит 2^8=256 возможных состояний, девять бит 2^9=512 и так далее.
Часть 1 - Назад Далее - Часть 3