Учены РХТУ им. Д.И. Менделеева озадачились поисками новых источников света. Они синтезировали аэрогель из оксида кремния со встроенными люминесцентными частицами металлоорганического вещества Alq3, то есть соединили люминесцентные вещества и аэрогели, чтобы получить равномерное излучение. Им удалось получить очень легкий и прозрачный материал, который способен вырабатывать свет.
Пористая структура аэрогеля защищает люминесцентные вещества от разрушающего воздействия внешней среды, а также позволяет совмещать в одной матрице разные люминофоры, что дает возможность получить более гладкий и равномерный спектр излучения, чем у современных светодиодов.
Исследования и результаты опытов опубликованы в Journal of Solid of State Chemistry. Теперь учены ищут прототип светоизлучающего устройства на основе нового подхода.
В типичном современном белом светодиоде есть сразу два светоизлучающих вещества. Одно из них — это люминесцирующее вещество, которое испускает синий и ультрафиолетовый свет под действием электрического тока, а второе – это полупрозрачная фосфоресцирующая пленка, которая уже под действием синего излучения начинает тоже испускать свет, но только уже желтый. Смесь желтого и синего в нужных пропорциях дает белый, но такая комбинация, конечно, отличается от естественного белого света: в ней слишком много ультрафиолета, а также другие соотношения между интенсивностями излучения на различных длинах волн, и в результате от такого света быстрее устают глаза. Поэтому ученые ищут новые подходы к созданию светодиодов.
Исследователи из РХТУ предложили использовать для этого аэрогели – так называют материалы, представляющие собой твердые легкие губки, поры которых заполнены газом. Аэрогели обладают очень маленькой плотностью, огромной пористостью, до 99% аэрогеля занимает воздух, а также огромной площадью внутренней поверхности до 1500 м2/г, то есть если просуммировать общую площадь внутренней поверхности всех пор кусочка аэрогеля массой всего в пять грамм, то получится целое футбольное поле. Поэтому аэрогели уже используют для создания разных теплоизоляционных материалов, суперконденсаторов и других применений.
Артём Лебедев, старший научный сотрудник РХТУ:
“Мы попробовали внедрить люминесцентные вещества в аэрогели по двум основным причинам. Во-первых, у многих люминофоров заметно ухудшается спектр излучения с появлением даже самых незначительных примесей, а также они стремительно деградируют при контакте с влажным воздухом, который их окисляет. Аэрогель может выступать в таких случаях как своего рода защитник люминофора от окружающей среды. Во-вторых, аэрогель можно использовать как объемный излучатель, то есть встроить в него не один, а несколько люминесцентных веществ, излучение которых вместе даст гладкий и равномерный спектр. Также аэрогель хорошо подходит и для классической схемы белого светодиода, в котором ультрафиолетовое излучение одного вещества возбуждает фотолюминесценцию другого вещества. Аэрогель хорошо поглощает ультрафиолет и не дает ему выходить наружу, а вместо этого отправляет в путешествие по сложнейшему лабиринту пор, пока ультрафиолет не дойдет до молекул люминофора. В результате получается равномерный спектр, сглаженный вот этой сложной внутренней архитектурой аэрогеля”.
От демонстрации возможностей к первому прототипу
Ученые говорят, что это только первая демонстрация возможностей нового подхода и для полученных аэрогелей пока некорректно оценивать такие конечные технические характеристики светоизлучающих устройств, как энергоэффективность. Сейчас ученые продолжают работу и в ближайшее время планируют сделать прототип светоизлучающего устройства на основе аэрогелей.
Артём Лебедев, старший научный сотрудник РХТУ:
“В этой первой работе мы уже показали перспективность подхода с люминесцентными аэрогелями, но у этого подхода есть еще одна очень важная перспектива. Дело в том, что сам Alq3 стоит очень дорого. Это связано с необходимостью его многократной очистки, с трудностями синтеза. В то же время исходный хинолин, из которого его синтезируют, значительно дешевле. И вот если придумать, как синтезировать металлоорганический комплекс из его прекурсоров непосредственно внутри “защитной” оболочки аэрогеля, в инертной среде сверхкритического диоксида углерода, то это было бы очень и очень выгодно. Над этим мы сейчас активно работаем".
По материалам: https://www.nanonewsnet.ru/news/2021/svet-iz-labirinta-rossiiskie-khimiki-poluchili-lyuminestsentnyi-aerogel