Найти в Дзене
Современная наука

Искусственная гравитация и способы ее создания

Зачем создавать искусственную гравитацию? Ведь сейчас экипажи МКС обходятся привычными средствами профилактики, чтобы справиться с влиянием невесомости. Человек может нормально существовать, когда на весь его организм действует знакомая сила притяжения Земли. В условиях невесомости этого воздействия нет, что чревато возникновением проблем со здоровьем. И если мускулатуру и суставы можно поддерживать в тонусе, занимаясь на специальных тренажерах, то внутренние органы таким образом не натренируешь. Чтобы полет, например, на Марс не представлял чрезмерного риска для здоровья, необходимо разработать установку, которая создавала бы искусственную гравитацию на космическом корабле. Давайте рассмотрим все способы создания искусственной гравитации. 1. Большая масса космического корабля Самый логичный вариант – сделать космический корабль настолько большим, чтобы на нем возникала искусственная гравитация. На корабле можно будет чувствовать себя комфортно, поскольку не будет потеряна ориентация в

Зачем создавать искусственную гравитацию? Ведь сейчас экипажи МКС обходятся привычными средствами профилактики, чтобы справиться с влиянием невесомости. Человек может нормально существовать, когда на весь его организм действует знакомая сила притяжения Земли. В условиях невесомости этого воздействия нет, что чревато возникновением проблем со здоровьем. И если мускулатуру и суставы можно поддерживать в тонусе, занимаясь на специальных тренажерах, то внутренние органы таким образом не натренируешь. Чтобы полет, например, на Марс не представлял чрезмерного риска для здоровья, необходимо разработать установку, которая создавала бы искусственную гравитацию на космическом корабле.

Давайте рассмотрим все способы создания искусственной гравитации.

Космический корабль с планетарными размерами
Космический корабль с планетарными размерами

1. Большая масса космического корабля

Самый логичный вариант – сделать космический корабль настолько большим, чтобы на нем возникала искусственная гравитация. На корабле можно будет чувствовать себя комфортно, поскольку не будет потеряна ориентация в пространстве.

К сожалению, этот способ при современном развитии технологий нереален. Чтобы соорудить такой объект, требуется слишком много ресурсов. Кроме того, для его подъема потребуется невероятное количество энергии.

2. Ускорение

-2

Казалось бы, если требуется достичь g, равного земному, нужно всего лишь придать кораблю плоскую форму, и заставить его двигаться по перпендикуляру к плоскости с нужным ускорением. Таким путем будет получена искусственная гравитация, причем – идеальная.

Однако в реальности все гораздо сложнее.

В первую очередь стоит учесть топливный вопрос. Для того чтобы станция постоянно ускорялась, необходимо иметь бесперебойный источник питания.

Вторая проблема заключается в самой идее постоянного ускорения. Согласно нашим знаниям и физическим законам, невозможно ускоряться до бесконечности.

Кроме того, такой транспорт не подходит для исследовательских миссий, поскольку он должен постоянно ускоряться – лететь. Он не сможет остановиться для изучения планеты, он даже медленно пролететь вокруг неё не сможет – надо ускоряться. Таким образом, становится ясно, что и такая искусственная гравитация нам пока недоступна.

3. Карусель

-3

Все, что находится в диаметре карусели, стремится выпасть из нее со скоростью, примерно равной скорости вращения. Выходит, что на тела действует сила, направленная вдоль радиуса вращающегося объекта. Это очень похоже на гравитацию. Кольцеобразный корабль, вращаясь вокруг продольной оси, создает центробежную силу.

Чтобы вычислить получаемое ускорение, требуется разделить силу на массу. Знающим физику людям посчитать это будет совсем не сложно: a = ω²R. Согласно этому, для получения привычной нам g, необходимо грамотно сочетать угловую скорость и радиус космического транспорта. Для того чтобы получить ускорение в 9.8, вращение должно происходить со скоростью, примерно, 10.5 оборота ежеминутно.

При указанных величинах проявляется «эффект Кориолиса», который заключается в том, что на различном удалении от пола действует разная сила. Она напрямую зависит от угловой скорости. Выходит, искусственная гравитация в космосе создана будет, однако слишком быстрое вращение корпуса приведет к проблемам с внутренним ухом. Искусственная гравитация на космической станции становится доступной, когда на помощь приходит «цилиндр О’Нила».

«цилиндр О’Нила»
«цилиндр О’Нила»

Для создания этой конструкции необходимы одинаковые цилиндрические корабли, которые соединяют вдоль оси. Вращаться они должны в разные стороны. Результатом такой сборки является нулевой момент импульса, поэтому не должно возникнуть трудностей с приданием кораблю необходимого направления.

Если возможно сделать корабль радиусом порядка 500 метров, то он будет работать именно так, как и должен. При этом искусственная гравитация в космосе будет вполне комфортной и пригодной для длительных перелетов на кораблях или исследовательских станциях.

Итоги

Среди всех рассматриваемых в данный момент вариантов наиболее реалистично выглядит вращающаяся конструкция. Однако при нынешнем понимании физических законов это невозможно, поскольку корабль – это не полый цилиндр. Внутри него имеются перекрытия, мешающие воплощению идей.

Кроме того, радиус корабля должен быть настолько большим, чтобы эффект Кориолиса не оказывал существенного влияния.

Чтобы управлять чем-то подобным, требуется упомянутый выше «цилиндр О’Нила», который даст возможность управлять кораблем. В этом случае повышаются шансы применения подобной конструкции для межпланетных перелетов с обеспечением команды комфортным уровнем гравитации.

До того как человечеству удастся претворить свои мечты в жизнь, хотелось бы видеть в фантастических произведениях чуточку большей реалистичности и еще большего знания законов физики.