ИИ используется во многих сферах человеческой деятельности. Машинный разум — это удобный, быстрый и зачастую более выгодный по сравнению с человеком инструмент. Нашлось ему применение и в сфере кибербезопасности. Так, с помощью ИИ многие компании обеспечивают более надёжную защиту своих баз данных, разгружая аналитические отделы за счет автоматизации выполнения рутинных задач.
Обнаружение мошенничества, обнаружение вредоносных программ, обнаружение вторжений, оценка риска в сети и анализ поведения пользователя/машины — это пятёрка самых актуальных способов применения ИИ для улучшения кибербезопасности.
ИИ реально меняет привычные аспекты кибербезопасности. Он улучшает способности компаний предвидеть и предотвращать киберпреступления, защищает устройства с нулевым уровнем доверия, может контролировать даже устаревание паролей! То есть искусственный интеллект действительно необходим для обеспечения безопасности периметров любого бизнеса.
Поиск взаимосвязей между угрозами и анализ вредоносных файлов, подозрительных IP-адресов или необычную деятельность сотрудника длится считанные секунды или минуты. То есть уже сейчас ИИ помогает человеку обеспечивать кибербезопасность. А в дальнейшем его возможности будут только расширяться, делая участие человека в процессе защиты чисто номинальным.
Обладая более мощной и более гибкой инфраструктурой, любая организация, независимо от ее размера, сектора или региона, может занять место на переднем крае мировой индустрии. А это, в свою очередь, означает демократизацию новых технологий, что особенно заметно в области корпоративных разработок искусственного интеллекта. Абсолютное большинство корпораций способны получить доступ к технологиям ИИ, что дает им широкое поле для различных исследований, и можно уже видеть некоторые интересные инновации с использованием ИИ, которые можно применить в информационной безопасности.
EDR (Endpoint Detection and Response) — платформы обнаружения атак на рабочих станциях, серверах, любых компьютерных устройствах (конечных точках) и оперативного реагирования на них. С помощью технологий ИИ продукты данной категории могут обнаруживать неизвестные вредоносные программы, автоматически классифицировать угрозы и самостоятельно реагировать на них, передавая данные в центр управления. ИИ принимает решения на основе общей базы знаний, накопленной путём сбора данных со множества устройств. Некоторые продукты данного типа используют технологии ИИ для разметки данных на конечных точках и дальнейшего контроля их перемещения, чтобы выявлять внутренние угрозы.
NDR (Network Detection and Response) — устройства и аналитические платформы, которые обнаруживают атаки на сетевом уровне и позволяют оперативно на них реагировать. Используя накопленную статистику и базу знаний об угрозах, продукты данного типа выявляют с помощью технологий ИИ угрозы в сетевом трафике и могут автоматически на них реагировать надлежащим образом, изменяя конфигурацию сетевых устройств и шлюзов. Часть продуктов данного типа специализируется на защите облачных провайдеров и их инфраструктуры. Дополнительный сценарий использования ИИ в сетевой защите — это анализ почтового трафика на предмет фишинга.
UEBA (User and Entity Behavior Analytics) — системы поведенческого анализа пользователей и информационных сущностей. Они обнаруживают случаи необычного поведения и используют их для детектирования внутренних и внешних угроз. Основной сценарий применения ИИ-технологий в продуктах типа UEBA — это автоматическое выявление аномалий в поведенческих моделях (отклонение от нормы или соответствие шаблону (паттерну) угрозы) для пользователей и различных сущностей информационных систем. Выявленные аномалии классифицируются с помощью ИИ как различные угрозы и риски для бизнеса. Аномальное поведение может выявляться в целях мониторинга и управления доступом, обнаружения мошенничества среди клиентов или сотрудников (антифрод), защиты конфиденциальных данных, проверки соблюдения тех или иных регламентов и нормативных актов.
TIP (Threat Intelligence Platform) —платформы раннего детектирования угроз и реагирования на них, действующие на основе большого количества различных данных (Data Lake) и индикаторов компрометации (IoC). Применение ИИ позволяет повысить эффективность выявления неизвестных угроз на ранних этапах; сценарий очень схож с работой SIEM-систем, но нацелен на внешние источники данных и внешние угрозы.
SIEM (Security Information and Event Management) — решения, которые осуществляют мониторинг информационных систем, в режиме реального времени анализируют события безопасности, поступающие от сетевых устройств, средств защиты информации, ИТ-сервисов, инфраструктуры систем и приложений, и помогают обнаружить инциденты ИБ. В системах такого класса накапливается огромное количество данных из различных источников, а применение технологий ИИ даёт возможность выявления аномалий эвристическими методами и сокращения ложных срабатываний при изменении паттернов и моделей данных. Применение ИИ в SIEM-системах позволяет достигнуть очень высокого уровня автоматизации.
SOAR (Security Orchestration and Automated Response) — системы, позволяющие выявлять угрозы информационной безопасности и автоматизировать реагирование на инциденты. В решениях данного типа, в отличие от SIEM-систем, ИИ помогает не только проводить анализ, но и автоматически реагировать надлежащим образом на выявленные угрозы.
Средства защиты приложений (Application Security) — системы, позволяющие определять угрозы безопасности прикладных приложений, управлять дальнейшим циклом мониторинга и устранения таких угроз. Основной сценарий применения технологий ИИ в системах защиты прикладных приложений — автоматический сбор информации об уязвимостях, атаках и заражениях, доступной в открытых источниках, и основанная на его результатах автоматизация защитных действий: сканирования на уязвимости, изменения правил защиты для веб-приложений, выявления угроз и изменения рисковой модели.
Антифрод (Antifraud) — системы, позволяющие выявлять угрозы в бизнес-процессах и предотвращать мошеннические операции в режиме реального времени. В системах защиты от мошенничества технологии ИИ применяются для определения отклонений от установленных бизнес-процессов, тем самым помогая быстро реагировать на возможное финансовое преступление или уязвимость процессов. Применение ИИ в таких системах особенно актуально, так как позволяет быстро адаптироваться к изменению логики и различных метрик бизнес-процессов, а также использовать лучшие практики в индустрии.
Искусственный интеллект вносит заметный вклад в борьбу с современными информационными угрозами. В частности, в большинстве случаев внедрение технологий ИИ в информационной безопасности организации сокращает время выявления проблем и реагирования на инциденты, а также расходы на управление персоналом. Эксплуатанты отмечают рост эффективности детектирования неизвестных угроз, а также скорости анализа и обнаружения вредоносной активности на конечных точках и в приложениях.