Найти в Дзене
Компьютерный мастер

Что такое токамак?

Оглавление

Токамак (тороидальная камера с магнитными катушками) — тороидальная установка для магнитного удержания плазмы с целью достижения условий, необходимых для протекания управляемого термоядерного синтеза.

Плазма в токамаке удерживается не стенками камеры, которые не способны выдержать необходимую для термоядерных реакций температуру, а специально создаваемым комбинированным магнитным полем — тороидальным внешним и полоидальным полем тока, протекающего по плазменному шнуру. По сравнению с другими установками, использующими магнитное поле для удержания плазмы, использование электрического тока является главной особенностью токамака. Ток в плазме обеспечивает разогрев плазмы и удержание равновесия плазменного шнура в вакуумной камере. Этим токамак, в частности, отличается от стелларатора, являющегося одной из альтернативных схем удержания, в котором и тороидальное, и полоидальное поля создаются с помощью внешних магнитных катушек.

Один термоядерный реактор – Солнце. В центре звезды, где под воздействием гравитации достигается очень высокая плотность плазмы, реакция протекает при температуре 15 млн °С. На Земле достигнуть такой плотности не получится – остаётся только повышать температуру.

В настоящее время токамак считается наиболее перспективным устройством для осуществления управляемого термоядерного синтеза.

Энергия, выработанная термоядерным реактором, даже по самым скромным подсчётам должна стать дешевле атомной в несколько десятков раз.

История.

Предложение об использовании управляемого термоядерного синтеза для промышленных целей и конкретная схема с использованием термоизоляции высокотемпературной плазмы электрическим полем были впервые сформулированы советским физиком Олегом Александровичем Лаврентьевым в работе середины 1950 г. Эта работа послужила катализатором советских исследований по проблеме управляемого термоядерного синтеза. Андрей Дмитриевич Сахаров и Игорь Евгеньевич Тамм в 1951 г. предложили модифицировать схему, предложив теоретическую основу термоядерного реактора, где плазма имела бы форму тора и удерживалась магнитным полем.

Если нынешние технологии ядерной энергетики основаны на реакции распада, когда из более тяжёлых ядер образуются более лёгкие, то при термоядерном синтезе, наоборот, лёгкие атомные ядра соединяются, образуя более тяжёлые.

Термин "токамак" был придуман в 1957 г. Игорем Николаевичем Головиным, учеником академика Курчатова. Первоначально он звучал как "токамаг" — сокращение от слов "тороидальная камера магнитная", но Н.А. Явлинский, автор первой тороидальной системы, предложил заменить "-маг" на "-мак" для благозвучия. Позже это название было заимствовано многими языками.

Первый токамак был построен в 1954 г., и долгое время токамаки существовали только в СССР. Лишь после 1968 г., когда на токамаке T-3, построенном в Институте атомной энергии им. И.В. Курчатова под руководством академика Л.А. Арцимовича, была достигнута электронная температура плазмы 1 кэВ (что соответствует 11,6 млн °C), и английские учёные из лаборатории в Кулхэме (Nicol Peacock и др.) со своей аппаратурой приехали в СССР, произвели измерения на Т-3 и подтвердили этот факт, в который поначалу отказывались верить. Потом в мире начался настоящий бум токамаков. Токамаки появились в США, Европе, Японии, Китае.

Они доказали, что создавать и удерживать высокотемпературную плазму, в которой идёт реакция, реально. Однако до сих пор удержание было коротким, исчисляясь секундами, а также затратным в смысле энергии, потраченной на разогрев. Для науки такие результаты были достаточными, а для того чтобы человечество могло шагнуть в новую энергетическую эру – нет.

И тогда родилась идея международного проекта, основная задача которого - построить реактор, способный вырабатывать энергию в объёмах, значительно больших, чем необходимо для поддержания термоядерной реакции.

ITER.

Начало было положено в 1985 г. на встрече глав СССР и США. Проект назвали Интернациональным термоядерным экспериментальным реактором (ITER). Он решает общую для всего человечест­ва задачу, да и масштаб таков, что одной стране не потянуть, потому и стал международным. Сегодня в нём участвуют страны ЕС, Китай, Индия, Япония, Республика Корея, Россия и США. Участие каждой стороны определено: Европа - 45%, остальные – по чуть более 9%, но выражается это не валютой, а осязаемым вкладом – выполненными работами или изготовленным оборудованием.

ITER располагается на юге Франции, по соседству с исследовательским центром Кадараш, в котором имеется свой токамак.

Наша страна участвует в сооружении всех основных конструкций мегатокамака, изготавливает сверхпроводники, создаёт системы испытаний и диагностики. Более 30 российских предприятий и организаций задействованы в этом, большинство из них - дочерние предприятия Госкорпорации "Росатом".

Само оборудование это уникально - в большинстве случаев для его создания разрабатываются абсолютно новые технологии. К примеру, первая стенка бланкета ("одеяла") плазменной камеры, на которую придётся максимальная температурная нагрузка. Какие материалы смогут выдержать? Какие нюансы в конструкцию нужно заложить? На эти вопросы уже нашли ответы в Научно-исследовательском институте электрофизической аппаратуры им. Д. В. Ефремова (НИИЭФА). Стенка будет из бериллия, и не сплошная, а нарезанная маленькими квадратными пластинками - чтобы материалу легче было «дышать» и он не растрескался от высоких температур, как земля в летний зной.

Ещё одна серьёзная задача, которую уже решили росатомовские учёные и специалисты, - соединение друг с другом разных материалов: бериллия - бронзы, меди - нержавеющей стали, вольфрама – меди. Обычная сварка для условий проекта не подходит, поэтому медь наплавляют на вольфрам в вакуумной камере, сталь соединяют с медью методом "сварки взрывом" - тогда образуется единый металлический блок, который уже не разъединить даже сверхвысоким температурам.

Участие в проекте - серьёзный толчок не только для отечественной науки, но и для экономики страны, поскольку даёт возможность шагнуть на иной уровень технологий и производств, а иногда и прыгнуть. К примеру, на Чепецком механическом заводе за 4 года с нуля освоили производство продукции из титановых сплавов. Благодаря участию в проекте на заводе запущена новая - сложная и дорогостоящая - номенклатура изделий, что значительно повысило доходы предприятия.

Мощность самой производительной в России Ленинградской АЭС составляет 4200 МВт. Расщепления радиоактивных материалов в четырёх энергоблоках достаточно, чтобы осветить огромную территорию. Средняя мощность ITER должна составить 500 МВт за один импульс, а пиковая мощность этого комплекса должна составить 1100 МВт — четверть мощности Ленинградской АЭС.

Особенность термоядерного синтеза заключается в том, что за сутки таких импульсов может быть десять, а при должном умении — сто и даже более тысячи. После перемножения импульсов на мегаватты выработанной энергии получится, что самая маленькая термоядерная электростанция в разы производительнее атомной. К тому же дейтерий и тритий, используемые в качестве топлива, существенно экологичнее изотопов урана и плутония, да и термоядерный реактор (в теории) почти не надо "перезаряжать".

Устройство токамака.

Токамак представляет собой тороидальную вакуумную камеру, на которую намотаны катушки для создания тороидального магнитного поля. Из вакуумной камеры сначала откачивают воздух, а затем заполняют её смесью дейтерия и трития (изотопы водорода).

Дейтерий легко "достаётся" из воды, а тритий более нестабилен, поэтому нарабатывается внутри установки за счёт реакции с литием.

Ядро первого состоит из протона и нейтрона, а ядро второго - из протона и двух нейтронов. В обычных условиях одинаково заряженные ядра, конечно, отталкиваются друг от друга, но при сверхвысоких температурах, наоборот, соединяются. В результате образуется ядро гелия плюс один свободный нейтрон, но главное - при этом высвобождается огромное количество энергии, которую раньше атомы тратили на взаимодействие друг с другом.

Затем с помощью индуктора в камере создают вихревое электрическое поле. Индуктор представляет собой первичную обмотку большого трансформатора, в котором камера токамака является вторичной обмоткой. Электрическое поле вызывает протекание тока и зажигание в камере плазмы.

Протекающий через плазму ток выполняет две задачи:

  • нагревает плазму так же, как нагревал бы любой другой проводник (омический нагрев);
  • создаёт вокруг себя магнитное поле. Это магнитное поле называется полоидальным (то есть направленное вдоль линий, проходящих через полюсы сферической системы координат).

Магнитное поле сжимает протекающий через плазму ток. В результате образуется конфигурация, в которой винтовые магнитные силовые линии "обвивают" плазменный шнур. При этом шаг при вращении в тороидальном направлении не совпадает с шагом в полоидальном направлении. Магнитные линии оказываются незамкнутыми, они бесконечно много раз закручиваются вокруг тора (форма пустотелого бублика или пончика), образуя так называемые «магнитные поверхности» тороидальной формы.

Топлива для термоядерного синтеза нужно минимум, а безопасность значительно выше, чем при нынешних технологиях. Ведь плотность плазмы очень мала (в миллион раз ниже плотности атмосферы) – соответственно никакого взрыва быть не может. А при малейшем снижении температуры реакция прекращается - тогда плазма, как говорят физики, просто "осыпается", не нанося никакого вреда окружающей среде. Кроме того, загружаться топливо будет непрерывно, то есть работу реактора легко остановить в любой момент. Радиоактивных отходов он практически не производит.

Источник 1. Источник 2. Источник 3.

---

Третий путь атомной энергетики: токамак Т-15.