Найти тему
Разнобой

Почему на ноль делить нельзя?

Сложение, умножение, деление и вычитание — эти принципы известны каждому школьнику, учащемуся в средних классах. Однако далеко не все знают, что равноправными действиями обладают лишь первые два из них.

Чтобы было более понятно, следует немного попрактиковаться в арифметике. Что значит пример: «4−2»? Большинство школьников ответит на него достаточно просто: «Нужно взять 4 предмета, после чего провести удаление — отнять два из них, а затем взглянуть, сколько осталось». Вот только профессиональные математики представляют эту задачу совершенно иначе. Ее решение будет представлено уравнением: «x+2=4», корень которого представлен заменой арифметического действия. Нетрудно догадаться, что число «x» будет равно двум. Стоит отметить, что пример был решен без единого минуса.

Точно так же обстоит дело с умножением и делением. Запись 8 : 4 можно понимать как результат разделения восьми предметов по четырем равным кучкам. Но в действительности это просто сокращенная форма записи уравнения 4 · x = 8 .

Вот тут-то и становится ясно, почему нельзя (а точнее невозможно) делить на ноль. Запись 5 : 0 — это сокращение от 0 · x = 5 . То есть это задание найти такое число, которое при умножении на 0 даст 5 . Но мы знаем, что при умножении на 0 всегда получается 0 . Это неотъемлемое свойство нуля, строго говоря, часть его определения.

Такого числа, которое при умножении на 0 даст что-то кроме нуля, просто не существует. То есть наша задача не имеет решения. (Да, такое бывает, не у всякой задачи есть решение.) А значит, записи 5 : 0 не соответствует никакого конкретного числа, и она просто ничего не обозначает и потому не имеет смысла. Бессмысленность этой записи кратко выражают, говоря, что на ноль делить нельзя.

-2

Почему читать книги в современном мире очень важно?

Как выглядит самая большая мышь в мире?

Великий Ктулху — спаситель или губитель?

Откуда взялась тельняшка?

Что такое баобаб?