Найти в Дзене

Регуляторы роста растений. Фитогормоны.

Гормоны растений
Гормоны являются посредниками в физиологических процессах, преобразуют специфические сигналы окружающей среды в биохимическую информацию. Гормоны, образующиеся в растениях, называют эндогенными. Применяемые человеком для обработки растений — экзогенными.
Потребность растения в гормонах составляет 10-13,10-5 моль/л, в большинстве случаев синтезируются в достаточных количествах

Гормоны растений

Гормоны являются посредниками в физиологических процессах, преобразуют специфические сигналы окружающей среды в биохимическую информацию. Гормоны, образующиеся в растениях, называют эндогенными. Применяемые человеком для обработки растений — экзогенными.

Потребность растения в гормонах составляет 10-13,10-5 моль/л, в большинстве случаев синтезируются в достаточных количествах самим растением. Синтезируются в отдельных частях растения, но распространяются по всему организму. Под их действием происходит регулирование обмена веществ. Гормоны проявляют физиологическое действие на:

1. ферменты и ферментные системы;

2. обмен белков, липидов, нуклеиновых кислот;

3. информационные и транспортные рибонуклеиновые кислоты;

4. дезоксирибонуклеиновую кислоту.

Эффект действия гормонов в одних случаях сводится к временному изменению интенсивности биохимических реакций, в других — проявляется в устойчивом отклонении процессов, в-третьих — в морфологических изменениях, затрагивающих соматическую сферу организма, в-четвёртых — в наследственных морфологических изменениях.

К числу наиболее активным и изученным соединениям гормонального действия растительного происхождения относятся ауксины, гиббереллины, цитокинины, абсцизовая кислота и этилен.

В отличие от животных в растениях отсутствуют железы, секретирующие гормоны.

Действие гормонов на обмен веществ растительного организма специфично: гиббереллины участвуют в транскрипции. То есть переносе информации о нуклеотидной последователь­ности ДНК на информационную РНК при синтеза белков. Цитокинины — в трансляции, то есть процессе перевода последовательности нуклеотидов ин­формационной РНК в последовательность аминокислот синтезируемого полипептида. Ауксины — в изменении проницаемости мембран. Абсцизины ингибируют ионный транспорт и связанные с ним процессы роста клеток, этилен выступает в качестве “разрешающего” фактора роста, контролирует баланс в системе стимуляторы-ингибиторы.

Фитогормоны и как они работают

Фитогормонами называют вещества, вырабатываемые растениями для управления собственным ростом и развитием, а также реакцией на воздействия окружающей среды. Фитогормоны управляют прорастанием семян, образованием и ростом корней, побегов и листьев, цветением, завязыванием и ростом плодов и, наконец, торможением всех процессов обмена веществ в конце сезона с окончательным увяданием всего растения или его переходом в зимнюю спячку. Кроме того, они отвечают за адаптацию растений к таким факторам, как гравитация, освещение, температурный режим, недостаток влаги и питания, а также за сопротивляемость вредителям и инфекциям.

У растений нет специальных органов для выработки фитогормонов, аналогичных железам внутренней секреции у животных. Фитогормоны вырабатываются непосредственно клетками тканей растений, однако при этом существует определенное распределение зон выработки, т.е. одни фитогормоны вырабатываются, премущественно, в верхушках растений, другие в корнях, третьи в листьях и т.д. Необходимый для начального роста запас фитогормонов присутствует в семенах.

Фитогормоны делятся на категории в зависимости от химической структуры и спектра действия. Интернет-источники для садоводов обычно ограничиваются рассмотрением пяти-шести наиболее известных, однако современная наука насчитывает уже не менее 9-ти хорошо изученных категорий: ауксины, цитокинины, гиббереллины, брассиностероиды, жасмонаты, салицилаты, стриголактоны, абсцизиновую кислоту и этилен. Кроме того, имеются еще и недостаточно изученные категории полипептидных фитогормонов (системин и др.) и фитогормонов-полисахаринов. Процесс открытия новых фитогормонов продолжается.

Спектр действия фитогормонов разнообразен и каждый из них выполняет не одну, а несколько функций, зависящих от типа растительной ткани, места воздействия и внешних условий. Более того, фитогормоны, по большей части, работают не в одиночку, а в тесном взаимодействии друг с другом, образуя перекрестные связи. Полное рассмотрение всех сторон и механизмов их функционирования требует серьезной начальной подготовки и весьма объемно, поэтому ограничимся лишь кратким обзором наиболее важных моментов.

Общая характеристика

Ауксины – соединения преимущественно индольной природы: индолилуксусная кислота и ее производные. Ауксин образуется в апикальных меристемах и стимулирует клеточное растяжение. Ауксины подавляют развитие боковых побегов и стимулируют образование боковых корней и корневых придатков стебля, в то время, как цитокинины подавляют развитие боковых корней и стимулируют развитие боковых побегов

Гиббереллины ускоряют рост стебля, в меньшей степени – корня за счет, как деления, так и растяжения, прерывают период покоя у семян, клубней и луковиц, индуцируют цветение длиннодневных растений при коротком дне, стимулируют прорастание пыльцы, оказывают действие на биосинтез ферментов. Обработка озимых гиббереллинами заменяет яровизацию.Кроме того, гиббереллины также причастны к стимуляции процессов прорастания семян, цветения, закладки пола цветков, опыления и в некоторых других. Однако наиболее известной и практически востребованной является функция стимуляции образования завязей, в связи с чем они используются в качестве основы регуляторов роста - стимуляторов плодообразования.

Цитокинины – производные 6-аминопурина, синтезируются главным образом в меристеме корня, участвуют в регуляции обмена веществ в надземных органах, индуцируют в присутствии ауксина деление клеток. Они стимулируют открытие дыхательных устьиц листьев, являясь индикатором нормального поступления воды от корней, а также выполняют ряд других специфических функций, связанных с цветением и образованием семян

Абсцизовая кислота накапливается осенью в семенах и почках, индуцирует их переход в период покоя и увеличивает его продолжительность, ускоряет образование отделительного слоя при опадении листьев, тормозит рост отрезков стеблей и калеоптилей.

Абсцизовая кислота выполняет следующие функции:

  • при пониженных температурах и недостатке влаги тормозит все реакции, вызванные ауксинами, цитокининами и гиббереллинами, в т.ч. останавливает рост растения и раскрытие почек, уменьшает транспирацию, закрывая устьица, стимулирует опадение листьев;
  • регулирует состояние физиологического покоя деревьев в середине периода вегетации, в. т.ч. блокирует апикальное доминирование ауксинов, разрешая раскрытие боковых почек и рост боковых побегов;
  • регулирует состояние покоя семян, в т.ч. обеспечивает их обезвоживание и ингибирует прорастание в отсутствие влаги;

Этилен образуется, практически, во всех тканях и его действие проявляется на всех этапах жизненного цикла растения - от прорастания семян до созревания плодов. Образовываться этилен может как в результате реакции на внешние механические воздействия, так и в соответствии с фазами вегетационного цикла. В первом случае он выполняет следующие наиболее важные функции:

  • оптимизирует геометрические параметры проростка в случае упирания его в препятствия в процессе прорастания ;
  • выступает синергистом в запуске механизмов защитных реакций на механические повреждения, способствуя образованию в тканях жасмонатов и салицилатов;
  • стимулирует образование т.н. раневой перидермы - пробкоподобной отделительной прослойки либо между поврежденными и здоровыми тканями, либо в основании поврежденного листа или плода, в результате чего поврежденные ткани, листья или плоды вместе с повредившими их вредителями или патогенами отделяются от растения и опадают;
  • непосредственно подавляет некоторые патогены, например, возбудители ржавчин;
  • стимулирует опадение ненужных органов оплодотворенных цветков с началом образования завязи в результате ее механического давления на окружающие ткани;

Во втором случае этилен тормозит процессы роста в конце вегетационного периода, в т.ч. стимулирует разрушение хлорофилла и старение листьев с образованием отделительной перидермы в их основании, а также стимулирует процессы созревания плодов по окончании их роста с образованием такой же, как у листьев, отделительной перидермы в их основании.

Кроме того, у ряда культур этилен может вызывать специфические реакции, например преимущественное образование цветков одного пола.

Брассинолиды – поддерживают иммунитет растений в стрессовых ситуациях (уменьшение температуры, засуха, заморозки, засоление почвы, болезни, действие пестицидов).

Первый эпи-брассинолид был выделен американскими учеными в 1979г. из пыльцы рапса, он обладает биорегуляторной и ростостимулирующей активностью. Природные РРР не представляют какой-либо опасности для окружающей среды и человека, т.к. в процессе эволюции биосферы и организма человека вырабатывались соответствующие механизмы их биотрансформации.

Синтетические РРР получают химическим или микробиологическим путём. С физиологической точки зрения они являются аналогами эндогенных фитогормонов, либо могут оказывать влияние на биосинтез и функционирование гормонов растений. Их применяют с целью влияния на процессы роста, развития и жизнедеятельности растений, обеспечения урожайности, улучшения качества, обеспечения уборки. К этой группе соединений можно отнести также гербициды, вызывающие задержку роста и гибель растений. Известно, что гербициды в зависимости от дозы могут проявлять как ингибирующее, так и стимулирующее действие.

ПРОЧИЕ ФИТОГОРМОНЫ

Выше были рассмотрены основные, достаточно известные фитогормоны. Менее известны стриголактоны, полипептиды и полисахарины.

СТРИГОЛАКТОНЫ

Стриголактоны образуются в корнях растений при недостатке элементов минерального питания - азота, фосфора и других. Они транспортируются в надземную часть и в целях экономии минерального питания тормозят рост боковых побегов. Одновременно они стимулируют выделение в почву веществ-аттрактантов, привлекающих в корневую систему грибы-симбионты, улучшающие снабжение корней недостающими минеральными веществами.

ПОЛИПЕПТИДНЫЕ ФИТОГОРМОНЫ

Полипептидные фитогормоны обнаруживаются не у всех растений и при этом могут выполнять различные функции. В частности, у томатов и картофеля имеется полипептидный фитогормон системин, участвующий в запуске глобальной иммунной реакции в ответ на механические повреждения. У ряда других растений обнаруживется полипептидный фитогормон фитосульфокин, участвующий в процессах деления клеток и образования боковых корней и побегов. Известны фитогормоны этой категории, управляющие размером апикальной зоны роста побега, блокирующие процессы самоопыления, а также ряд других.

ОЛИГОСАХАРИНЫ

Олигосахарины в организме растений образуются в результате расщепления полисахаридов клеточных стенок. На сегодня известно, что фитогормоны этой категории участвуют в процессах стимуляции созревания.

Процесс открытия новых фитогормонов и новых свойств уже известных фитогормонов продолжается.

Механизм действия фитогормонов

Фитогормоны, обладая полифункциональным действием, регулируют многие биохимические процессы растений. Перемещаясь в растении, гормоны проникают в клетки тканей-мишеней, отличающиеся повышенной чувствительностью к гормонам. Проникнув в клетки, гормон связывается с белками-рецепторами, являющимися проводниками гормонального действия в клетке. Взаимодействие гормона и рецептора приводит к биохимическим реакциям, обеспечивающим реализацию физиологического действия данного гормона. Известны 2 типа рецепторов: внутриклеточные растворимые белки-рецепторы, связывающие фитогормоны и мигрирующие между цитоплазмой и ядром; мембранные белки-рецепторы, связывающие фитогормоны из внеклеточного пространства. Рецепторы первого типа, связав гормон, воздействуют на метаболизм в клетке, изменяя уровень транскрипции соответствующих генов ДНК ядра и органелл (экспрессия генома). Обнаружены растворимые связывающие белки первого типа для ауксина, цитокинина и гиббереллина. Мембранные белки-рецепторы второго типа, образовав комплекс с гормоном, вызывают быстрое увеличение в клетке концентрации метаболитов-посредников, при помощи которых реализуется физиологическое действие фитогормона. Таким образом, механизм действия фитогормонов в клетке сводится, прежде всего, к активации специфических генов, ответственных за синтез необходимых ферментов. Фитогормоны воздействуют также на структуру и функции клеточных мембран, рибосом, эндоплазматического ретикулума, что приводит к изменению метаболизма клетки. Механизмы действия как мембранно-связанных, так и растворимых комплексов белок – гормон изучены недостаточно. Биосинтез самих фитогормонов контролируется геномом растения.