Найти в Дзене
Бизнес Агрегатор

9 способов, как ИИ поможет решить проблему глобального потепления

Со стремительным развитием технологий искусственного интеллекта (ИИ) в последние годы многие стали задаваться вопросом о том, как эти самые технологии смогут помочь в решении одной из самых серьезных угроз, которая уже нависла над человечеством – глобальным изменением климата? Новая статья, подготовленная одними из ведущих специалистов в области разработки искусственного интеллекта и
Оглавление

Со стремительным развитием технологий искусственного интеллекта (ИИ) в последние годы многие стали задаваться вопросом о том, как эти самые технологии смогут помочь в решении одной из самых серьезных угроз, которая уже нависла над человечеством – глобальным изменением климата? Новая статья, подготовленная одними из ведущих специалистов в области разработки искусственного интеллекта и опубликованная в онлайн-репозитории пытается ответить на этот вопрос, предлагая несколько примеров того, как машинное обучение будет способно предотвратить закат нашей цивилизации.

Предложенные способы варьируются от использования ИИ и спутниковых технологий для более эффективного мониторинга обезлесения, до разработки новых материалов, которые смогут заменить сталь и цемент (на их производство приходится до 9 процентов выбросов парниковых газов в атмосферу). Несмотря на такое разнообразие, в своей статье специалисты раз за разом возвращаются к более широким возможностям использования подобных технологий. Особенно на этом фоне выделяются возможности использования технологии машинного зрения для мониторинга окружающей среды; проведение больших анализов данных для определения неэффективности производств с высоким уровнем выбросов вредных веществ в атмосферу; а также использование ИИ для разработки новых более эффективных моделей систем, вроде наших климатических моделей, благодаря которым мы сможем лучше прогнозировать и готовиться к будущим изменениям.

Авторы статьи, в числе которых в том числе британский исследователь искусственного интеллекта, основатель и исполнительный директор компании DeepMind Демис Хассаби, лауреат премии Тьюринга и один из «отцов глубокого обучения» Йошуа Бенжио, а также соучредитель Google Brain — исследовательского проекта Google по изучению искусственного интеллекта на основе глубокого обучения — Эндрю Ын говорят, что ИИ может оказать «неоценимую помощь» в минимизации самых худших последствий глобального изменения климата, но добавляют, что эта технология не является «серебряной пулей» — единственным средством ото всех проблем. По их мнению, в этом вопросе должны принимать непосредственное активное участие политические силы.

В общей сложности в статье рассматривается сразу несколько сфер, в которых технологии машинного обучения могли бы найти свое применение, категоризованных по временным рамкам их возможного потенциала использования, объясняемого тем, достаточно ли развита данная технология. Ниже можно ознакомиться с этим списком.

Искусственный интеллект позволит повысить эффективность систем электроснабжения

-2

Если в будущем человечество планирует положиться на большее количество источников возобновляемой энергии, коммунальным предприятиям потребуются способы, позволяющие более эффективным образом предсказывать и рассчитывать те объемы энергии, которые нам действительно будут необходимы в использовании. Причем эти вычисления должны будут происходить в реальном времени и в течение всего периода работы этих предприятий.

Уже разработаны алгоритмы, способные прогнозировать спрос на энергию, однако эффективность этих алгоритмов может быть еще улучшена за счет внесения в расчеты таких факторов, как особенности климата тех или иных регионов, а также особенности ведения хозяйственной деятельности. Попытки сделать специфику работы этих алгоритмов более понятной также позволит операторам коммунальных предприятий более точно интерпретировать результаты их анализа и использовать их при планировании, выбирая наиболее оптимальное время для запуска этих источников возобновляемой энергии.

Искусственный интеллект поможет в открытии новых материалов

-3

Ученым необходимо разработать новые материалы для более эффективного производства, хранения и использования энергии, однако, как правило, процесс открытия и разработки новых материалов очень медлителен и не всегда успешен. Технологии машинного обучения позволят ускорить процесс поиска, разработки и усовершенствования новых формул с желаемыми свойствами.

Возможно, это приведет к разработке, например, нового вида топлива, условно назовем его «солнечным», которое сможет сохранять в себе энергию солнечного света; позволит создать новый и очень эффективный абсорбент углекислого газа или строительные материалы, при производстве которых будет выделяться меньше углеродов. Такие материалы однажды смогут заменить сталь и бетон, при производстве которых в атмосферу выделяется почти 10 процентов от общего объема мировых выбросов парниковых газов.

Искусственный интеллект поможет эффективно реорганизовать транспортную систему

-4

Доставка грузов по всему миру является очень сложным и очень часто неэффективным логистическим процессом, при котором происходит взаимодействие товаров различного объема, веса и размеров, а также используются разные виды транспорта. В то же время именно на транспорт приходится четверть всех выбросов CO2 в атмосферу. Технологии машинного обучения, используемые в этой сфере, позволят более эффективно объединять товары, требующие доставки в один и тот же пункт назначения, что сократит количество требуемых перевозок. Кроме того, такая система окажется более устойчивой к непредвиденным перебоям в системах транспортных сообщений и сможет управлять огромными автопарками беспилотных грузовых автомобилей. Однако авторы отмечают, что на данный момент последняя технология еще не готова.

Искусственный приведет к быстрой адаптации электромобилей

-5

Электромобили, являющиеся ключевым элементом декарбонизатации автотранспорта, сталкиваются с рядом проблем, не позволяющих им стать по-настоящему массовыми. В этом вопросе может помочь машинное обучение, считают авторы доклада. Например, с помощью алгоритмов можно будет улучшить управление расхода энергии батарей чтобы увеличить километраж каждой зарядки и снизить у потенциальных покупателей подобных транспортных средств уровень беспокойства по поводу ограничения дальности поездки. Кроме того, этих технологии позволят оптимизировать время зарядки.

Искусственный интеллект оптимизирует инфраструктуру зданий

-6

Умные системы контроля, работающие на базе машинного обучения, смогут в значительной степени сократить уровень потребления энергии зданиями, приняв в расчет погодные условия, текущую занятость здания и другие окружающие факторы, после чего соответствующим образом настроят отопление, охлаждение, вентиляцию, освещение в помещении. Умные здания смогут передавать информацию о текущем состоянии окружения непосредственно в энергосети, чтобы можно было снизить уровень энергопотребления в случае, если наблюдается дефицит низкоуглеродного электроснабжения.

ИИ сможет более точно рассчитать количество используемых энергоресурсов

-7

Во многих регионах мира практически отсутствуют данные об уровне местного энергопотребления и выбросах парниковых газов в атмосферу, что может оказаться большой проблемой для разработки и реализации эффективных компенсационных мер. Методы машинного зрения позволят использовать спутниковые технологии для оценки пятна (площади) застроек, чтобы алгоритмы машинного обучения на основе этих данных смогли рассчитать уровни потребления энергии и выбросов. Аналогичные методы можно использовать для определения зданий, требующих модернизации для повышения их эффективности.

Искусственный интеллект оптимизируют каналы поставок

-8

Используя аналогичные возможности, технологии машинного обучения смогут оптимизировать каналы и цепи поставок, минимизировав объемы выбросов углеродов при транспортировки различных товаров. Возможность более эффективного прогнозирования закона спроса и предложения позволит сократить производственные и транспортные отходы.

Искусственный интеллект сделает масштабируемым точное земледелие

-9

Большинство современных агрокультурных хозяйств используют принцип выращивания монокультур. Другими словами, на большой площади выращиваются только одна культура. Такой подход облегчает фермерам задачу по обработке полей сельскохозяйственной техникой и другими базовыми автономными инструментами, но в то же время истощает почву, лишая ее питательных веществ и тем самым делая ее менее продуктивной. В результате для повышения урожайности нередко применяется различные удобрения, в частности на основе азота, которые могут превращаться в оксиды азота – парниковые газы в 300 раз более опасные, чем углекислый газ. Роботы использующие машинное обучение могут помочь сельскому хозяйству оценить текущее состояние почвы и подсказать, какие нужно сажать культуры, чтобы восстановить здоровье почвы, снизив необходимость в использовании удобрений.

ИИ поможет более эффективно следить за вырубкой леса

-10

Вырубка леса способствует выбросам примерно 10 процентов от общего объема парниковых газов. Отслеживание и предотвращение этой часто нелегальной деятельности – обычно очень трудоемкий и рутинный процесс, требующий личного наблюдения на месте. В свою очередь спутниковые изображения вкупе с технологиями машинного зрения позволят проводить автоматический анализ потери лесного покрова в больших масштабах, а специальные датчики, установленные на участках, в сочетании с алгоритмами, способными, например, определять звуки бензопил, могут помочь правоохранительным органам более эффективно бороться с незаконной деятельностью.