Исторически сложилось так, что из всех разработанных многофазных систем переменного тока в конце XIX и начале XX века, широко применяться стали трёхфазные системы.
Изначально электротехники не понимали, как по трём проводам могут протекать 3 разных тока, так как они привыкли, что каждый ток к потребителю протекает по одному проводу и возвращается по второму. Михаил Осипович Доливо-Добровольский в своих работах показал, что в многофазной системе со сдвигом фаз, составляющим угол в 120°, в каждый момент времени алгебраическая сумма напряжений или токов равняется нулю.
В итоге трёхфазная система получила распространение, потому что обладает следующими преимуществами:
- Наиболее экономичный способ передачи электроэнергии.
- Возможно получить два напряжения без дополнительного преобразования.
- Позволяет получать вращающееся магнитное поле, необходимое для работы электродвигателей.
Основные определения
Совокупность трёх отдельных электрических цепей, где действуют созданные одним источником энергии, одинаковые по частоте и амплитуде синусоидальные ЭДС, расположенные со сдвигом в 120° относительно друг друга называется трёхфазной цепью.
Каждую из трёх действующих ЭДС, обычно называют просто «фаза». Проводник или обмотка, в которых действует ЭДС, также называется «фазой». Условимся, что первую фазу будем считать фазой «А», вторую — фазой «В», третью — фазой «С». Каждая из фаз в электроустановках обозначается своим цветом, так фаза «А» — обозначается жёлтым, фаза «В» — зелёным, фаза «С» — красным цветом.
При симметричной нагрузке в трёхфазной системе полные значения сопротивлений нагрузки по фазам ZA, ZB, ZC равны.
Полное сопротивление — это сумма активного (R) и реактивного (X) сопротивлений. Реактивное сопротивление, в свою очередь, состоит из индуктивного (XL) и емкостного (XС) сопротивлений.
Формула для определения полного сопротивления:
Формула для определения реактивного сопротивления:
Итак, когда нагрузка в трёхфазной цепи симметричная, значения токов и напряжений во всех фазах сдвинуты на одинаковый угол 120° относительно друг друга.
При несимметричной нагрузке полные значения сопротивления фаз потребителей не равны между собой.
Соответственно, в этом случае действующие значения токов и напряжений во всех фазах не будут равны между собой и угол сдвига фаз будет отличаться от угла в 120°.
Какая нагрузка преобладает в электросети
Раньше среди потребителей значительную часть нагрузки составляла активная, то есть лампы накаливания, различные электронагревательные приборы. В последние десятилетия возросла доля индуктивной нагрузки (электродвигатели в различной бытовой технике) и емкостной (конденсаторные батареи, пусковые конденсаторы электродвигателей, импульсные источники питания без ККМ и т.п.).
При активной нагрузке ток и напряжение совпадают по фазе и мощность, передаваемая генератором, расходуется на совершение работы. Но так как на самом деле нагрузка в электросети смешанная, то есть имеет активный и реактивный характер, уменьшается величина активной мощности, которая расходуется на совершение работы и увеличивается количество реактивной энергии.
Для обеспечения симметричной нагрузки важен и характер её распределения. При подключении трёхфазных приборов к бытовой электросети, как правило, нагрузка распределяется равномерно. В этом случае можно утверждать, что нагрузка симметричная.
Но в реальности больше однофазных потребителей, ведь в большинстве случаев в частных домах и квартирах ввод однофазный, а все электросети при этом трёхфазные. Даже при тщательном распределении домов и квартир по фазам, нагрузка будет несимметричной, так как почти никогда потребители на каждой из фаз не потребляют одинаковую мощность.
Схемы работы сети
Существует два основных способа соединения обмоток генератора (или питающего трансформатора) и потребителей электрической энергии в симметричных трёхфазных системах: звезда и треугольник.
Возможно соединение генератора и потребителей как с применением нулевого провода, так и без него. Если обмотки генератора и потребителя соединяются в звезду с нулевым проводом, то электроэнергия передаётся по 4-х проводной линии.
Схему соединения нагрузки и источника треугольником вы видите ниже, в этом случае электроэнергия передаётся по 3-х проводной линии.
Напряжение между двумя фазными проводами, будет называться линейным напряжением, а напряжения между началом и концом фаз генератора или приёмника называются фазными (Uф), другими словами, это напряжение между фазным и нулевым проводом.
При соединении звездой питающего трансформатора или нагрузки фазные и линейные напряжения связаны друг с другом и соотносятся таким образом:
Uл=√3Uф; Uф= Uл/√3
То есть значение линейного напряжения в такой схеме в √3 или в 1,73 раза больше фазных.
К примеру, если линейное напряжение равняется 380 В, фазное напряжение будет равно 220 В. Это позволяет подключать потребителей, с рабочим напряжением и 220 и 380 В к одной 4-х проводной линии электропередач.
Дополнительных трансформаторов не требуется — к трём фазным проводам без нулевого подключаются трёхфазные потребители, напряжением 380 В, а к фазному и нулевому проводу подключаются однофазные потребители, которым требуется напряжение 220 В.
При соединении звездой, когда нагрузка симметричная, линейные напряжения (Uл) равны (Uab=Ubc=Uac) и имеют сдвиг по фазе относительно друг друга на угол в 120° как и фазные.
Соединение генератора (или питающего трансформатора) и приёмника треугольником позволяет создавать линии электропередачи (ЛЭП) без нулевого провода. Такие ЛЭП могут иметь напряжение 6 000 В, 10 000 В и называются линиями с изолированной нейтралью. В таких ЛЭП соединение обмоток трансформаторов выполнено треугольником.
При таком способе соединения фазное напряжение равно линейному:
Uф= Uл
При соединении треугольником, при симметричной нагрузке, фазные токи в разных фазах будут одинаковы, а линейные токи будут в √3 раз больше фазных. В схеме соединения звездой фазный и линейный токи одинаковы. Подробнее об этом вы можете почитать здесь.
На что это влияет
Как мы отмечали выше, в реальной трёхфазной электросети нагрузка несимметричная. При этом обмотки питающего трансформатора соединяются звездой. Однофазные потребители также соединены по схеме звезды — к каждому приходит «своя» фаза, и все подключаются к одному и тому же нулевому проводу.
Соответственно нагрузка будет несимметричной. Чтобы уровнять нагрузки, потребителей распределяют по фазам равномерно. То есть если какая-то из фаз оказывается перегруженной, то отдельных потребителей переводят на менее нагруженную фазу.
Если бы мы питались от трёхпроводной сети без нулевого провода, то при неравномерной загрузке фаз, у соседей, проживающих в домах, подключённых к одной линии, было бы пониженное или повышенное напряжение. Из-за этого может выйти из строя бытовая техника и повредиться электропроводка.
Рассмотрим, что происходит в электросети при несимметричной нагрузке без нулевого провода, например, при его обрыве.
При наличии нулевого провода, напряжение между нейтралью генератора и потребителя (UnN) будет равно:
где, U – комплексные напряжения, Y – комплексные проводимости нагрузок каждой из фаз.
При достаточно низком сопротивлении нейтрали её проводимость будет стремиться к бесконечности, поэтому напряжение нейтрали у потребителя будет стремиться к нулю. Сумма фазных напряжений при симметричной нагрузке будет равняться нулю и ток на нулевом проводнике, тоже равен нулю.
При отсутствии нулевого провода или при его обрыве, его сопротивление будет стремиться к бесконечности, а проводимость будет равной нулю.
Напряжение смещения нейтрали у потребителя при отсутствии нулевого провода может изменяться в широких пределах, а его расчёт выполняется по формуле:
В этом случае искажения фазных напряжений будут наибольшими.
Так как при симметричной нагрузке напряжение нейтрали близко к нулю и все фазные напряжения равны, то нулевой провод не нужен. Когда изменяются сопротивления фаз, то напряжение смещения нейтрали может достигать высоких значений.
Фазные напряжения приёмника будут существенно изменяться, и точка нейтрали на векторной диаграмме может сдвигаться, что наглядно иллюстрирует следующая анимация.
Такие изменения значений фазных напряжений называются перекосом фаз, он происходит при отгорании нуля между потребителем и питающей подстанцией. Поэтому при проектировании сети нулевой провод не защищается установкой плавкой вставки предохранителя или установкой автоматических выключателей.
Подведём итог
Нейтральный провод нужен как для выравнивания фазных напряжений при несимметричной нагрузке, так и для подключения однофазных приёмников, имеющих напряжение 220 В к трёхфазной сети, напряжением 380 В.
При несимметричной нагрузке по нулевому проводу начинает проходить уравнивающий ток. Соответственно, если прикоснуться к оборванному нулевому проводу, можно получить поражение электрическим током.
На воздушных линиях электропередач также устраиваются повторные заземления нулевого провода — на опорах, через определённое расстояние создаётся соединение нулевого провода с землёй. Это позволяет не допустить повреждение оборудования потребителей при обрыве нулевого провода или при плохом контакте на нулевом выводе силового трансформатора.