А вы задумывались, почему можно использовать для записи чисел строчки из цифр?
Понятно, что много веков назад индусы придумали отличную систему счисления, потом арабы принесли её в Европу и теперь мы все учим её в школе. Понятно также, почему система именно десятичная. Вопрос не в этом: почему эта система работает?
Я не буду сейчас рассказывать вам, что число это абстракция количества, или уверять, что число это просто. Нет, числа — это хитрая вещь, раз уж эта заметка шестая в целой серии заметок о том, как устроены даже самые простые числовые системы, с конечным и очень небольшим количеством элементов.
Важно, что числа, это не только множество. Для его элементов должны быть корректно определены арифметические операции и отношения, а для них, в свою очередь, должны выполняться всякие законы и связи между этими законами.
Возьмем, например, палочки, и станем с их помощью записывать числа: |, ||, |||, ||||, ... Далее, определим ряд операций с рядами палочек: сложение — это пририсовывание палочек, умножение — замена одной палочки несколькими. Их можно даже вычитать, пока палочек хватает, а также раскладывать кучки палочек на кучки одинаковых кучек, то есть, делить с остатком. С описанными операциями они уже образуют некоторую алгебраическую структуру, но всë же, палочки — это палочки, а никакие не числа.
В свою очередь, натуральные числа — это вовсе не кучки палочек. В современной математике они определяются через набор аксиом Пеано, ничего общего с палочками не имеющих, и тоже образуют некоторую алебраическую структуру.
И вот, что замечательно. Каждое число можно соединить стрелочкой с уникальной кучкой палочек и наоборот каждую кучку — с уникальным числом. Кроме того, сумма любых двух чисел соединится стрелочкой с суммой соответствующих этим числам кучек палочек. И наоборот. То же относится и к произведениям.
Такие стрелочки легко нарисовать, но что они будут работать правильно, нужно доказывать, что и было сделано алгебраистами в конце XIX века. Такая "похожесть" между алгебраическими системами называется изоморфизмом, она играет роль равенства между ними. Система кучек из палочек изоморфна системе натуральных чисел. Это отношение записывают так:
кучки палочек ≃ ℕ.
Это значит, что одну из них можно использовать вместо другой и наоборот. Вот поэтому мы можем в младших классах объяснять арифметику натуральных чисел и все её законы на палочках, яблоках или енотах.
Целые числа уже не изоморфны кучкам палочек, поэтому так непросто бывает человеку, воспитанному палочками, принять отрицательные числа. Но можно отыскать иную модель, изоморфную системе целых чисел, например, перемещение по бесконечному ряду одинаковых клеток, где сложение это добавление шагов, а умножение — прыжки через несколько клеток разом.
Для рациональных и вещественных чисел удобной изоморфной системой может быть система преобразования непрерывной прямой с операциями сдвига, отражения и масштабирования. Так мы получаем декартову числовую прямую и систему координат. А, например, логарифмическая линейка предлагает изоморфизм между вещественными числами с операцией умножения и сдвигом числовой прямой, к которой применили нелинейное логарифмическое масштабирование.
Повторюсь, изоморфизм не означает, что точки на прямой, шаги по клеткам или кучки палочек и числа это одно и тоже. Они кое в чëм ведут себя как точные модели друг друга, но это совершенно разные системы.
Если стрелочки, согласующиеся с операциями, можно нарисовать только в одну сторону, а в другую — нет, то такое отношение называется гомоморфизмом.
Это тоже очень важное отношение. Например, гомоморфизмом будет отображение всех целых чисел на множество из двух элементов: {чётное, нечётное}. И вообще, остаток от деления на n задаёт гомоморфизм из целых чисел на кольцо вычетов ℤ/nℤ. А из житейских примеров гомоморфизмов можно привести всякую проекцию или тень трёхмерного объекта на плоскость.
* * *
Цифры, как мы видели, вовсе не изоморфны числам, ни натуральным, ни целым. Они образуют принципиально иную алгебраическую систему — конечное кольцо ℤ/10ℤ, изоморфное циферблату с десятью делениями, которым мы и пользовались для наглядности.
В этом кольце есть делители нуля, идеалы, своя система делимости... Почему же строки из цифр, каждая из которых складывается и умножается по законам кольца ℤ/10ℤ, ведут себя, как система, изоморфная натуральным или целым числам, а так же всем изоморфным им системам? Почему работают вычисления "в столбик", в которых мы явно пользуемся именно арифметикой вычетов, а не арифметикой целых чисел?
Вспомним, что такое 123 в позиционной записи:
123 = 1×10² + 2×10 + 3.
Вспомнили? А теперь забудем про то, что, что наша система счисления десятичная и заменим число 10 на произвольную величину x. Таким образом, мы получим многочлен:
f (x) = x² + 2x + 3,
в котором все коэффициенты принадлежат кольцу ℤ/10ℤ, а величина x — уже нет. Если подставить в него x = 10, что есть, значение, котрого нет в ℤ/10ℤ, то получим число 123.
Множество всех многочленов с коэффициентами из кольца K, обозначается так K[x] и, в свою очередь, образует кольцо, на сей раз, с бесконечным числом элементов. При этом ещё раз стоит заметить, что величина x не обязана принадлежать кольцу K.
Теория колец многочленов составляет бóльшую содержательную часть теории колец, и именно для их исследования, применительно к решению диофантовых уравнений и других задач теории чисел, вся теория колец и была разработана. Для колец многочленов тоже вычисляются идеалы, находятся простые элементы (неприводимые многочлены) и другие характеристики. Сотни лет люди возятся с ними, потому что вопрос разрешимости многих задач из разных областей математики можно свести к вопросу приводимости какого-либо многочлена (разрешимости уравнения) в том или ином кольце или поле. Именно так доказывается невозможность с помощью одних только циркуля и линейки совершить трисекцию угла, удвоение куба или построение произвольного правильного многоугольника.
Я не стану в этой серии заметок углубляться в теорию колец многочленов. Нам важно знать, что существует общая теорема о том, что вычисляя многочлен K[x] для фиксированного значения x из некоторой алгебраической системы, можно построить гомоморфизм из кольца многочленов в эту систему.
Именно таким гомоморфизмом ℤ/10ℤ[x] ⟶ ℤ, мы и пользуемся, производя вычисления над многозначными числами "в столбик". Двоичная, троичная, шестнадцатиричная и прочие системы счисления строятся благодаря существованию гомоморфизмов ℤ/nℤ[x] ⟶ ℤ для любого n > 1.
Наконец, можно построить изоморфизм ℤ/10ℤ[x] ≃ ℤ/10ᵏℤ для большого k, то есть, между многочленами над конечным кольцом в конечное кольцо с бóльшим числом элементов. Этот изоморфизм демонстрируют системы зубчатых колёс в шаговом счётчике, механическом одометре в автомобиле, в старом кассовом аппарате, или в арифмометре. Такие системы не могут считать до бесконечности. Когда во всех допустимых разрядах оказываются одни девятки, прибавление единицы возвращает систему в состояние соотвествующее нулю.
Торчат ли уши кольца?
А можно ли распознать какие-либо свойства кольца ℤ/10ℤ в десятичной системе счисления? Я приведу пару примеров, которые мы с вами теперь вполне можем понять.
Признаки делимости на 2 и 5
Мы выяснили, что в ℤ/10ℤ есть два простых идеала {0,2,4,6,8} и {0,5}, которые генерируются простыми элементами 2 и 5. Отсюда следуют хорошо нам всем известные признаки делимости на 2 и на 5, опирающиеся на то, принадлежит ли последняя цифра соответствующему идеалу. Нам, по привычке, эти признаки кажутся очевидными, но они работают только в системах счисления, основанных на кольцах вычетов, имеющих именно эти идеалы. Например, поскольку в ℤ/15ℤ число 2 не является простым элементом (это делитель единицы), то в системе счисления по основанию 15 признак делимости на 2 будет достаточно сложным, а признак делимости на 5 останется точно таким же, как в десятичной системе. А поскольку в простом кольце ℤ/5ℤ простых идеалов вообще нет, то в пятиричной системе счисления ни один признак делимости (кроме делимости, собственно, на 5) не будет опираться на последнюю цифру числа.
В тоже время, удобные признаки делимости на 3 и на 9 в десятичной системе связаны не с каким-то особым положением этих чисел в ℤ/10ℤ, а с тем, что число 10 отображается в единицу гомоморфизмами ℤ ⟶ ℤ/3ℤ и ℤ ⟶ ℤ/9ℤ.
Конечные десятичные дроби
Простые элементы в кольце цифр подсказывают нам, какие дроби будут конечными, а какие периодичными в выбранной системе счисления. Опять же, только дроби со степенями простых элементов в знаменателе будут давать конечные позиционные представления. Например, в ℤ/10ℤ простые элементы это 2 и 5, значит только десятичные дроби вида a/2ᵏ5ⁿ, для a, k, n = 0,1,2,... будут конечными. А в системах счисления, основанных на цифрах из ℤ/pℤ при любом простом p, конечные дроби возможны только со степенями p в знаменателе.
Кстати, конечные десятичные дроби, образуют своё собственное подкольцо внутри поля рациональных чисел. А это значит, что компьютеры и калькуляторы в которых принципиально конечное число разрядов в записи дробей, работают в некотором подкольце кольца конечных десятичных дробей.
Внешний признак простоты
Делители единицы в ℤ/10ℤ тоже способны дать кое-какую информацию. Кроме 2 и 5, все остальные простые числа в десятичной записи должны заканчиваться на делитель единицы, то есть, на 1, 3, 7 или 9. Кроме того, и любые произведения простых чисел, кроме 2 и 5, будут заканчиваться на одну из этих цифр, поскольку они образуют мультипликативную группу и замкнуты относительно умножения.
Опять же, нам, воспитанным на десятичной системе счисления, это свойство может показаться очевидным. Но стоит перейти в иную систему, очевидность "внешнего вида" простых чисел и их произведений потеряется.
Так, например, мы уже сразу можем заключить, что раз в ℤ/5ℤ все ненулевые элементы обратимы, то простые числа, кроме 5, вольны оканчиваться в пятиричной записи на любую цифру, кроме нуля (исключеним будет простое число 5). Вот как выглядит начало последовательности простых чисел из ℤ, записанных в пятиричной системе счисления:
2, 3, 10, 12, 21, 23, 32, 34, 43, 104, ...
Заключение
Вынужден признать, что кольца вычетов, выбранные нами для первого знакомства с кольцами, просты для понимания, но достаточно скудны на интересные особенности и большая часть их свойств и следствий сводится к простым соотношениям делимости целых чисел.
В кольце вычетов ℤ/nℤ, по составному модулю n
- все делители нуля это числа, кратные простым множителям числа n;
- все идеалы в кольцах вычетов главные и генерируются делителями нуля;
- делителями единицы будут числа, взаимно простые с n;
- простыми элементами кольца будут делители нуля, которые являются простыми в ℤ.
Вот, полюбуйтесь на устройство колец вычетов, вернее, на изоморфные им колечки с разноцветными кружочками.
Но, не смотря на простоту, познакомиться с кольцами вычетов небесполезно, они позволяют изучить себя в деталях при первом знакомстве и приоткрывают дверь в большую математику.
Неожиданные свойства колец и полей, как конечных, так и бесконечных, начинаются, когда мы начинаем их расширять и превращать в большие системы, такие как кольца многочленов, гауссовы числа или числа Эйзенштейна. Но тем, кто это уже изучил, читать об этом на Дзене будет уже не интересно, а тем, кто ещё нет, — не понятно. Однако, если кто-то из читателей ещё только присматривается к освоению математической специальности, то этого раздела алгебры ему не избежать.