Найти тему

Патент 2126585. Часть 2.

ДОПОЛНЕНИЯ К ОПИСАНИЮ ИЗОБРЕТЕНИЯ

«Электромашинный умножитель электрической мощности»

Раздел 1. Введение.

В заявленном Электромашинном умножителе электрической мощности применяются приводные синхронные двигатели с массивными магнитопроводящими явнополюсными роторами. Каждый такой двигатель представляет собой немного модернизированный электромагнит с подвижным якорем из магнитомягкого ферромагнетика. Рассмотрим работу подобного электромагнита подробнее.

На фиг.3 (см. Рисунки к патенту) показан сердечник электромагнита с обмоткой возбуждения и способный вращаться якорь, зафиксированный стопором. В некоторый момент времени замкнем электрический ключ и освободим стопор. Под действием магнитных сил якорь повернется против часовой стрелки и займет положение, очерченное на фиг.3 пунктирной линией. После этого отключим обмотку возбуждения от источника электроэнергии. За время протекания тока в обмотке - источник израсходует электрическую энергию Wи .

Вал якоря связан с валом ротора электрического генератора (последний не изображен на фиг.3). При описанном вращении якоря и при соответствующем вращении ротора генератора - генератор выдаст полное количество электрической энергии Wг . Запишем КПД рассматриваемого устройства в виде отношения :

k = ---------- .

Как справедливо отмечает устоявшаяся физика, из-за потерь при преобразовании электрической энергии источника в механическую энергию вращения якоря, из-за потерь от действия сил трения и механического сопротивления, из-за потерь при преобразовании механической энергии вращения в электрическую энергию генератора - величина Wг будет меньше величины Wи . Т.е. для КПД можно записать : k < 1 , как и “должно быть всегда”.

Теперь, внесем изменения в конструкцию рассматриваемого устройства. Вместо сердечника электромагнита с обмоткой возбуждения установим постоянный магнит, см. фиг.4. Причем используем постоянный магнит, действующий на якорь с прежними по величине магнитными силами. Пусть магнит, ориентированный согласно фиг.4, может перемещаться из плоскости чертежа по направляющим. Тогда к якорю, зафиксированному стопором, постоянный магнит сам приблизится из “любого далекого далека”. После этого в некоторый момент времени освободим стопор якоря на фиг.4. Под действием магнитных сил якорь повернется против часовой стрелки и займет положение, очерченное пунктирной линией.

Вал якоря по-прежнему связан с валом ротора электрического генератора. При описанном вращении якоря и при соответствующем вращении ротора генератора - генератор, как и ранее, выдаст электрическую энергию Wг. Но в устройстве на фиг.4 никакой источник электропитания не расходует электрическую энергию, т.е. Wи=0 . Тогда КПД рассматриваемого устройства запишется :

______Wг________ Wг

k = -------- = -------- = ¥ (бесконечность) .

_______Wи________ 0

Здесь уже перестают играть основную роль и потери от действия сил трения, и потери при преобразовании механической энергии вращения в электрическую энергию генератора, и все другие потери. Таким образом, величина КПД >> 1 не из области научных ошибок и не из области фантастики, а реальное свойство материального мира. Остается лишь техническая проблема распространения величины КПД >> 1 на периодические или монотонные процессы в соответствующих устройствах.

Заявленный Электромашинный умножитель электрической мощности обеспечивает непрерывное вращение роторов и имеет КПД не бесконечный, но во много раз больший, чем единица. Путем увеличения числа приводных синхронных двигателей пропорционально уменьшается потребляемая ими суммарная электрическая мощность, но сохраняется развиваемый ими суммарный крутящий момент при заданных оборотах, т.е. сохраняется выходная мощность. Такое достижимо благодаря существованию зависимостей (2) и (3) из Описания изобретения. Всё это согласуется с объективно действующими в материальном мире обобщенными энергетическими законами, составляющими Физическую теорию, именуемую «Новой энергетикой».

Раздел 2. Некоторые сведения из опыта эксплуатации электрических машин.

2.1. Работа синхронного трехфазного двигателя с массивным магнитопроводящим ротором.

Возьмем отдельный синхронный двигатель со свободным валом, запустим его до оборотов близких к n=3ООО об./мин. пусковым двигателем и подключим обмотки статора синхронного двигателя к первичному источнику трехфазного тока частоты 50 Гц. Затем удалим пусковой двигатель. Вращающееся магнитное поле статора синхронного двигателя подхватит ротор и заставит его вращаться с синхронной скоростью n=3ООО об./мин. Свободный вал синхронного двигателя не совершает никакой работы, квазистатическое смещение d полюсов ротора относительно статора минимальное или равное нулю. Электрическая схема питания любой из трех фаз двигателя очень проста. Первичный источник электроэнергии поддерживает на своих зажимах постоянное действующее значение напряжения Uo, измеряемое вольтметром. В данном режиме работы двигателя на холостом ходу обмотка фазы статора имеет комплексное электрическое сопротивление максимальной величины Ххол.хода . По обобщенному закону Ома ток через обмотку, измеряемый амперметром, минимален и равен: Iхол.хода = Uo / Xхол.хода.

Теперь будем тормозить вал двигателя силами трения, постепенно увеличивая момент сопротивления на валу. Это увеличение момента будет сопровождаться следующими явлениями : увеличивается смещение d полюсов - увеличивается эффективный воздушный зазор в магнитной цепи двигателя - уменьшается магнитная проводимость магнитной цепи - уменьшается комплексное электрическое сопротивление Х обмотки статора - при постоянстве напряжения Uо увеличивается ток в обмотке - увеличивается потребляемая двигателем электрическая мощность. При работе двигателя с механической нагрузкой ток статора может во много раз превышать значение Iхол.хода .

Факт такого увеличения тока и мощности, специалистам общеизвестный для единичного синхронного двигателя, нельзя формально автоматически переносить на более сложный случай нескольких последовательно соединенных синхронных двигателей с модернизированной магнитной цепью, применяемой в Электромашинном умножителе электрической мощности. Здесь необходим детальный анализ, который проведен в Описании изобретения и в тексте далее.

Для полноты изложения отметим, что момент сопротивления (торможения) на валу двигателя нельзя увеличивать беспредельно. При некотором критическом максимальном смещении полюсов dсрыва нарушается синхронизация вращения магнитного поля статора и вращения ротора двигателя, что приводит к лавинной остановке двигателя.

2.2. Работа трехфазного генератора электрической энергии.

Возьмем трехфазный генератор, ротор которого приводится во вращение неким двигателем, имеющим постоянную частоту вращения n=3ООО об./мин. в широком диапазоне изменения вращающего момента на валу. Сделаем замечание : такие и бо’льшие обороты при повышенном числе полюсов ротора генератора обязательны для генераторов малой (до 1 кВт) мощности, иначе ЭДС одного витка рабочей обмотки генератора будет ничтожной из-за малости магнитного потока у маленького ротора генератора ; более мощные генераторы намного эффективнее и имеют хороший КПД даже с одной парой полюсов ротора при всего сотнях об./мин. благодаря высокой ЭДС на виток ; выпускаемые промышленностью классные тихоходные мощные генераторы могут быть использованы в одном из конструктивных вариантов Электромашинного умножителя электрической мощности. Другой вариант последнего (точнее приводная синхронная машина к мощному генератору) требует, наоборот, большей частоты вращения – например такой распространенной как n=3ООО об./мин. , на которой для конкретности мы и остановились.

Пусть в каждой фазе генератора наводится полная ЭДС величиной Uо . Схема подключения каждой из трех фаз генератора к своей электрической нагрузке содержит единственное активное сопротивление R, одинаковое для любой фазы. Сделаем сопротивление Rбесконечно большим, так что амперметр в его цепи будет показывать нулевой ток. Это режим холостого хода генератора. В этом режиме вращающий момент Мхол.хода на валу практически нулевой.

Теперь будем уменьшать сопротивление R , что при постоянстве (или несущественном спаде) напряжения Uо генератора будет приводить к росту тока генератора, а значит - к росту отдаваемой генератором электрической мощности. Это будет сопровождаться следующими явлениями : увеличивается ток в обмотках генератора - увеличиваются магнитные потоки и силы, противодействующие вращению ротора генератора - увеличивается момент на валу приводного двигателя - увеличивается мощность, потребляемая приводным двигателем, продолжающим вращать ротор генератора с частотой n=3ООО об./мин.

Это еще один общеизвестный факт из опыта эксплуатации обычных двигатель-генераторных агрегатов : чтобы генератор вырабатывал увеличивающуюся мощность, приходится одновременно увеличивать мощность, подводимую к приводному двигателю. Этот факт в Описании изобретения ничуть не ставится под сомнение и всецело будет использован также в следующем пункте п.2.3 настоящих Дополнений. Идеология, заложенная в принцип действия Электромашинного умножителя электрической мощности, состоит совсем в другом, что дополнительно прояснится в ходе дальнейшего изложения.

Данный пункт п.2.2 закончим констатацией аналогии : для приводного двигателя, вращающего ротор рассмотренного генератора, действие генератора эквивалентно действию сил трения по сопротивлению вращению вала двигателя из пункта п.2.1.

2.3. Совместная работа синхронного двигателя и трехфазного генератора, имеющих близкую номинальную мощность.

Соединим муфтой вал двигателя с валом генератора. Подключим к генератору электрическую нагрузку в виде активного (омического) сопротивления, первоначально сделав R в каждой фазе бесконечно большим. Подключим синхронный двигатель к первичному источнику электроэнергии и запустим двигатель-генераторный агрегат, как описано в пункте п.2.1. В таком режиме работы машин : отдаваемая генератором мощность равна нулю ; момент на валу двигателя почти нулевой ; смещение d полюсов в двигателе практически нулевое ; мощность, потребляемая двигателем из первичной сети, минимальная.

Теперь будем одновременно уменьшать значение R в цепях нагрузки генератора, увеличивая отдаваемую генератором электрическую мощность. В двигатель-генераторном агрегате будут происходить процессы, описанные в конце пункта п.2.2. При каждом значении R будем по показаниям вольтметров проверять постоянство фазового напряжения Uо в первичной трехфазной сети для двигателя и такого же выходного фазового напряжения у генератора, а главным образом – будем снимать показания амперметра в любой из цепей питания двигателя и показания амперметра в любой фазе электрической нагрузки генератора. На основании этих измерений для каждого испытанного R можно определить мощность, потребляемую двигателем, и мощность, отдаваемую генератором, а также отношение мощностей.

Эти данные позволяют выбрать величину Rо электрического сопротивления, при которой общий КПД агрегата оказывается максимальным. Для крупных машин не предел общий КПД, например равный k=О,8 . Тогда для двигателя имеем : приложенное напряжение Uо , потребляемый ток Iо. Для генератора имеем : вырабатываемое напряжение Uо , отдаваемый ток О,8*Iо. Отсюда для справки :

________Uo_____________ Uo

Ro = --------- = 1,25 --------- .

_______O,8 Io____________ Io

Самое важное здесь - ввести обозначения характеристик синхронного двигателя на рассматриваемом оптимальном режиме работы. Вращающий момент на валу двигателя обозначим Мо . Смещение полюсов статора и ротора будет иметь конкретное значение dо , которое находится в пределах : O< dо < dсрыва . Комплексное электрическое сопротивление каждой обмотки статора двигателя также конкретно : Xо = Uо / Iо . Все введенные величины с нижним индексом «о» будут упоминаться и пригодятся далее.