Любая сложная задача всегда может быть разбита на несколько простых задач. Те в свою очередь могут быть разбиты на ещё1 более мелкие задачи. В олимпиадных задачах по программированию очень часто требуется найти НОД(наибольший общий делитель) или НОК(наименьшее общее кратное) двух или более чисел. Это может быть задача по фасовке предметам по ящикам (целочисленное деление) или формирование людей в бригады. Короче там где нужно искать целые числа после деления. Пример двух чисел 6 и 15. Очевидно, что НОД (наибольшим общим делителем) будет число 3. А далее находим НОК (наименьшее) общее кратное). Которое будет равно 30. Для небольших чисел это легко вычисляется в уме. Но вот с пятиначными числами, так легко не получится. Поэтому предлагаю обратиться к алгоритму Евклида. Математические выкладки и детали в данной статье затрагивать не буду, хотя там много есть интересного. Но суть достаточно простая. Их двух чисел выбираем большее и аычитаем из него меньшее. Далее выбираем снова большое
Легко находим НОК или НОД с помощью алгоритма Евклида
24 октября 202224 окт 2022
1696
1 мин