Найти тему
Zxc завод

4D печать.

Обычно под 4D подразумевают четырехмерное пространство, в котором существуют четырехмерные объекты — тессеракт, икоситетрахор (не имеет аналогов в трехмерном мире) и тому подобное. Несколько лет назад термин 4D стали использовать для обозначения особой технологии печати предметов, меняющих свои характеристики с течением времени. Таким образом, в 4D-печати «четвертым» называют не измерение, а параметр, с которым связано положение (возможно, что и функция) объекта.

Технологии 4D-принтера трудно назвать революционными по сравнению с обычной 3D-печатью — объект точно так же создаётся слой за слоем. Самое интересное происходит потом, когда готовый предмет начинает меняться. И здесь всё зависит от того, какой материал используется в принтере. Специальные материалы изменяются под воздействием воды, тепла, света, механического воздействия, а также могут быть запрограммированы на определенные действия.

4D-принтер объединяет четыре разные технологии трехмерной печати: робокастинг (послойная 3D-печать объекта), струйную трехмерную печать, технологию 3D-печати аэрозольным напылением, а также моделирование методом наплавления. Это позволяет устройству работать с такими материалами, как гидрогели, проводимые чернила с наночастицами серебра, а также полимеры с памятью формы.

По словам разработчиков устройства, новый принтер может ускорить внедрение 4D-печати в аэрокосмической отрасли и медицине.

Изменение формы при контакте с водой

Команда ученых Гарвардского университета обратила внимание на растения, которые реагируют и изменяют свою форму в ответ на стимулы окружающей среды. Были разработаны гидрогелевые композитные структуры, меняющие форму при погружении в воду

Объект в форме цветка орхидеи напечатали гидрогелевыми композитными чернилами, содержащими определённо направленные волокна целлюлозы. Чтобы придать древесным волокнам нужное направление, их смешали с акриламидным гидрогелем. При погружении в воду получившееся вещество изменяет свои геометрические размеры заранее определённым образом.

Композитные чернила позволяют получать изделия разной формы. Более того, можно менять состав материала для получения определённых свойств, например, электропроводности или биосовместимости.

Космическая защита

-2

С помощью 4D-печати инженеры НАСА создали металлическую ткань для защиты спутников от повреждений и радиации, а также для производства гибких антенн. Ткань представляет собой своеобразную «кольчугу», созданную из кусочков серебра и других металлов. Материал можно многократно сгибать, разгибать, растягивать и сжимать. Каждая сторона ткани обладает собственными свойствами, отражает или поглощает свет и тепло. Несмотря на гибкость, ткань крайне трудно разорвать. Планируется, что в защитный материал будут упаковывать спутники перед их выводом в космос, либо с его помощью станут экранировать скафандры и обитаемые модули.

Технологии для военных.

-3

Международный институт нанотехнологий Северо-Западного университета получил пятилетний грант от Министерства обороны США для разработки 4D-принтера. Четырехмерный принтер будет использоваться для исследований в области химии, материаловедения и в областях, связанных с обороной. Предполагается, что 4D-печать позволит создавать новые химические и биологические датчики, конструкции и материалы для микрочипов.

В настоящее время прогресс сдерживает отсутствие недорогого оборудования, способного выполнять печать со сверхвысоким разрешением (примерно в 1000 раз меньше толщины человеческого волоса) из твердых материалов (металлах и полупроводниках) и мягких материалов (например, органических).

Четырехмерный принтер станет основой нового поколения инструментов для разработки архитектур, в которых материалы, формирующие функциональные компоненты электроники, могут быть объединены с биологическими объектами.

Печать в медицине

-4

Врачи из провинции Шэньси на северо-западе Китая провели успешную и редкую операцию на трахее с использованием технологии четырехмерной печати. Врачи вставили пациентке трубчатый трахеальный стент, чтобы сохранить открытыми дыхательные пути. Для производства стента использовался биоматериал поликапролактон, который со временем растворяется — биодеградация в теле человека происходит медленно, около 3 лет. Врачи заранее определили время растворения напечатанного стента, и пациенту не нужно будет проходить еще одну операцию по его удалению.

Схожий случай произошел в США. Гарретт Петерсон родился с пороком развития бронхов — бронхомаляцией, когда хрящи недостаточно твердые. Вентиляция бронх была нарушена, и ребенок всю свою жизнь провел в госпитале Университета штата Юта на искусственной вентиляции легких, поддерживающих жизнь.

Между тем, в Мичиганском университете разработали трехмерную печатную шину, которая со временем могла разрушаться внутри тела без всяких последствий, но при этом могла держать открытыми дыхательные пути в течение двух-трех лет — достаточно, чтобы восстановить бронхиальный хрящ.

После создания виртуальной модели принтер печатает слои поликапролактона в форме конкретной трахеи. Хотя процесс создания индивидуальных стентов может показаться трудным, он занимает всего один день.

Вполне вероятно, что 4D-биоматериалы рано или поздно выйдут далеко за рамки респираторных заболеваний. Уже изучается проблематика реконструкции лица и восстановления ушей.

Об особенностях четырехмерного принтера, в настоящее время являющегося всего лишь концептом, поведал архитектор, ученый и по совместительству сотрудник MIT Скайлар Тиббитс (Skylar Tibbits), выступая на конференции TED в Лос-Анджелесе. По его словам, в будущем 4D-принтеры будут использоваться для печати мебели, средств передвижения и даже домов, причем все это будет самосборным.