Найти в Дзене

Первый закон Ньютона и инерциальные системы отсчёта

Первый закон Ньютона (закон инерции) Существуют системы отсчета, называемые инерциальными (далее − ИСО), в которых любое тело находится в состоянии покоя или движется равномерно и прямолинейно, если на него не действуют другие тела или действие этих тел скомпенсировано. В таких системах тело будет сохранять первоначальное состояние покоя или равномерного прямолинейного движения до тех пор, пока действие других тел не заставит его изменить это состояние. ИСО − особый класс систем отсчета, в которых ускорения тел обусловлены только реальными силами, действующими на тела, а не свойствами систем отсчета. Как следствие, если на тело не действуют никакие силы или их действие скомпенсировано R=F1+F2+F3+…=0, то тело либо не изменяет свою скорость V=const и движется равномерно прямолинейно либо покоится V=0. Инерциальных систем существует бесконечное множество. Система отсчета, связанная с поездом, идущим с постоянной скоростью по прямолинейному участку пути, – тоже инерциальная система (приб

Первый закон Ньютона (закон инерции)

Существуют системы отсчета, называемые инерциальными (далее − ИСО), в которых любое тело находится в состоянии покоя или движется равномерно и прямолинейно, если на него не действуют другие тела или действие этих тел скомпенсировано. В таких системах тело будет сохранять первоначальное состояние покоя или равномерного прямолинейного движения до тех пор, пока действие других тел не заставит его изменить это состояние.

ИСО − особый класс систем отсчета, в которых ускорения тел обусловлены только реальными силами, действующими на тела, а не свойствами систем отсчета. Как следствие, если на тело не действуют никакие силы или их действие скомпенсировано R=F1+F2+F3+…=0, то тело либо не изменяет свою скорость V=const и движется равномерно прямолинейно либо покоится V=0.

Инерциальных систем существует бесконечное множество. Система отсчета, связанная с поездом, идущим с постоянной скоростью по прямолинейному участку пути, – тоже инерциальная система (приближенно), как и система, связанная с Землей. Все ИСО образуют класс систем, которые движутся друг относительно друга равномерно и прямолинейно. Ускорения какого-либо тела в разных ИСО одинаковы.

-2

Как установить, что данная система отсчета является инерциальной? Это можно сделать только опытным путем. Наблюдения показывают, что с очень высокой степенью точности можно считать инерциальной системой отсчета гелиоцентрическую систему, у которой начало координат связано с Солнцем, а оси направлены на определенные «неподвижные» звезды. Системы отсчета, жестко связанные с поверхностью Земли, строго говоря, не являются инерциальными, так как Земля движется по орбите вокруг Солнца и при этом вращается вокруг своей оси. Однако при описании движений, не имеющих глобального (т. е. всемирного) масштаба, системы отсчета, связанные с Землей, можно с достаточной точностью считать инерциальными.

С гораздо большей точностью можно считать инерциальной систему отсчета, в которой начало координат совмещено с центром Солнца, а координатные оси направлены к неподвижным звездам. Эту систему отсчета называют гелиоцентрической.

Инерциальными являются и системы отсчета, которые движутся равномерно и прямолинейно относительно какой-либо инерциальной системы отсчета.

Галилей установил, что никакими механическими опытами, поставленными внутри инерциальной системы отсчета, невозможно установить, покоится эта система или движется равномерно и прямолинейно. Это утверждение носит название принципа относительности Галилея, или механического принципа относительности.

Этот принцип был впоследствии развит А. Эйнштейном и является одним из постулатов специальной теории относительности. ИСО играют в физике исключительно важную роль, так как, согласно принципу относительности Эйнштейна, математическое выражение любого закона физики имеет одинаковый вид в каждой ИСО.

Неинерциальная система отсчета − система осчета, не являющаяся инерциальной. В этих системах не работает свойство, описанное в законе инерции. По сути, всякая система отсчета, двигающаяся относительно инерциальной с ускорением, будет являться неинерциальной