Сегодня я предлагаю затронуть Вам такую тему, как информационные процессы, связанные с преобразованием одних сигналов в другие. Ясно, что технически это осуществимо. При более детальном ознакомлении с темой перед нами, естественно, встает вопрос: при изменении «оболочки» что происходит с его содержимым, т. е. с информацией? Попробуем найти ответ на него.
Поскольку имеются два типа сообщений, между ними, очевидно, возможны четыре варианта преобразований (рис. 1.2).
Осуществимы и применяются на практике все четыре вида преобразований. Рассмотрим примеры устройств и ситуаций, связанных с такими преобразованиями, и одновременно попробуем отследить, что при этом происходит с информацией.
Примерами устройств, в которых осуществляется преобразование типа N1 → N2, являются микрофон (звук преобразуется в электрические сигналы); магнитофон и видеомагнитофон (чередование областей намагниченный ленты превращается в электрические сигналы, которые затем преобразуются в звук и изображение); телекамера (изображение и звук превращаются в электрические сигналы); радио- и телевизионный приемник (радиоволны преобразуются в электрические сигналы, а затем в звук и изображение); аналоговая вычислительная машина (одни электрические сигналы преобразуются в другие).
Особенностью данного варианта преобразования является то, что оно всегда сопровождается частичной потерей информации. Потери связаны с помехами (шумами), которые порождает само информационное техническое устройство и которые воздействуют извне. Эти помехи примешиваются к основному сигналу и искажают его. Поскольку параметр сигнала может иметь любые значения (из некоторого интервала), то невозможно отделить ситуации: был ли сигнал искажен или он изначально имел такую величину. B ряде устройств искажение происходит в силу особенностей преобразования в них сообщения, например в черно-белом телевидении теряется цвет изображения; телефон пропускает звук в более узком частотном интервале, чем интервал человеческого голоса; кино- и видеоизображение оказываются плоскими, они утрачивают объемность.
Теперь обсудим общий подход к преобразованию типа N → D. С математической точки зрения перевод сигнала из аналоговой формы в дискретную означает замену описывающей его непрерывной функции времени Z(t) на некотором отрезке [t1, t2] конечным множеством (массивом) {Zi , ti}, i = 0, . . . , n, где n — количество точек разбиения временн´oго интервала). Подобное преобразование называется дискретизацией непрерывного сигнала и осуществляется посредством двух операций: развертки по времени и квантования по величине сигнала. Развертка по времени состоит в том, что наблюдение за значением величины Z осуществляется не непрерывно, а лишь в определенные моменты времени с интервалом ∆t = (tn − t0)/n. Квантование по величине — это отображение вещественных значений параметра сигнала в конечное множество чисел, кратных некоторой постоянной величине — шагу квантования (∆Z).
Теорема, которую мы примем без доказательства, но результаты будем в дальнейшем использовать, гласит:
Непрерывный сигнал можно полностью отобразить и точно воссоздать по последовательности измерений (отсчетов) величины этого сигнала через одинаковые интервалы времени, меньше или равные половине периода максимальной частоты, имеющейся в сигнале.
Последнее качество — универсальность — оказывается следствием того обстоятельства, что любые дискретные сообщения, составленные в различных алфавитах, посредством обратимого кодирования можно привести к единому алфавиту. Это позволяет выделить некоторый алфавит в качестве базового (из соображений удобства, простоты, компактности или каких-либо иных) и представлять в нем любую дискретную информацию. Тогда устройство, работающее с информацией в базовом алфавите, оказывается универсальным в том отношении, что оно может быть использовано для переработки любой исходной дискретной информации. Таким базовым алфавитом, как мы увидим в дальнейшем, является двоичный алфавит, а использующим его универсальным устройством — компьютер.
Несимметричность непрерывной и дискретной информации имеет более глубокую основу, чем просто особенности представляющих сигналов. Дело в том, что информация, порождаемая и существующая в природе, связана с материальным миром — это размеры, форма, цвет и другие физические, химические и прочие характеристики и свойства объектов. Данная информация передается, как было сказано, посредством физических и иных взаимодействий и процессов. Бессмысленно ставить вопросы: для чего существует такая информация и кому она полезна? Эту природную информацию можно считать хаотической и неупорядоченной, поскольку никем и ничем не регулируется ее появление, существование, использование. Чаще всего она непрерывна по форме представления. Напротив, дискретная информация — это информация, прошедшая обработку — отбор, упорядочение, преобразование; она предназначена для дальнейшего применения человеком или техническим устройством. Дискретная информация даже может не иметь прямого отношения к природе и материальным объектам, например представления и законы математики. Другими словами, дискретная — это уже частично осмысленная информация, т. е. имеющая для кого-то смысл и значение и, как следствие, более высокий (с точки зрения пользы) статус, нежели непрерывная, хаотичная. Однако в информатике, как было сказано, этот смысл не отслеживается, хотя и подразумевается. Эту же мысль можно выразить иначе: информатика имеет дело не с любой информацией и не с информацией вообще, а лишь с той, которая кому-то необходима; при этом не ставятся и не обсуждаются вопросы «Зачем она нужна?» и «Почему именно эта?» — это определяет потребитель информации.
Отсюда становится понятной приоритетность дискретной формы представления информации по отношению к непрерывной в решении глобальной задачи автоматизации обработки информации. Приведенные в данном разделе соображения позволяют нам в дальнейшем исследовать только дискретную информацию, а для ее представления (фиксации) использовать некоторый алфавит. При этом нет необходимости рассматривать физические особенности передачи и представления, т.е. характер процессов и виды сигналов, — полученные результаты будут справедливы для любой дискретной формы представления информации независимо от физической реализации сообщения, с которым она связана. С этого момента и начинается наука информатика.
На этом знакомство с преобразованием сообщений заканчивается. Надеюсь, информация была для Вас полезной! Подписывайтесь на мой канал! До скорых встреч!