Найти тему

Космология 4.1. Общепризнанная космологическая теория землян

Помощник посла высокоразвитой цивилизации со звёздного скопления "Стожары" ("Плеяды") Ивана Васильевича Пономаренко
Помощник посла высокоразвитой цивилизации со звёздного скопления "Стожары" ("Плеяды") Ивана Васильевича Пономаренко

Серия физика высокоразвитой цивилизации

4.1 Общепризнанная космологическая теория землян

Прежде, чем характеризовать и излагать земную теорию мироздания, заметим, что, если в строении вещества наши знания удивительном образом во многом похожи и почти совпадают со знанием высокоразвитой цивилизации, то в вопросах мироздания всё совершенно наоборот.

Действительно, мы правильно определили, что вещество состоит из атомов, а атомы в свою очередь имеют в своём составе обособленные элементарные частицы: протоны, нейтроны и электроны. Протоны и нейтроны сосредоточены в центре атома, а электроны находятся далеко от протонов и нейтронов, на внешней границе атома. В строении вещества у нас только одна незначительная ошибка, которая заключается в том, что квантовые механикисты зачем-то объединили протоны и нейтроны в, так называемом, нуклонном ядре. Было две ошибки, но сейчас одна. Вторая ошибка заключалась в том, что до сих пор не было открыто истинное ядро атома, которое есть отдельная элементарная частица. Однако эта ошибка нами уже исправлена. В 2018 году нами сделано физическое открытие, что ядро атома является отдельной элементарной частицей, которое опубликовано в международном реферируемом научном журнале «Наука через призму времени».

К сожалению, в вопросах мироздания всё не так. В этих вопросах у нас одна сплошная ошибка. Мы сходимся лишь в одном, что галактики вселенных разбегаются. Но почему именно? Об этом у нас совершенно разные мнения.

Самая главная алогичность земной теории мироздания заключается в том, что ортодоксы решили и постановили, что вся материя появилась во вселенной в разогретом состоянии, причём очень сильно разогретом до миллиардов, или секстиллионов градусов. Из обихода мы знаем, что для того чтобы вскипятить всего стакан воды надо сильно постараться и каким-то способом получить и направить на стакан электромагнитные волны. Но в предлагаемой нам модели вселенной, электромагнитные волны появляются позднее, чем разогретая материя, как результат её остывания. Уже только по этому можно отринуть этот одиозный ком теорий мироздания современной космологии. Однако мы всё же кратко рассмотрим её и отметим остальные алогичности.

Характерно, что самые начальные этапы развития вселенной наши земные учёные «знают» гораздо лучше, чем этапы её развития более позднего времени. Так, учёные «знают», что происходило за миллиардные, миллионные и тысячные доли секунды после Большого взрыва, но чем ближе к нашим временам, тем больше затруднений и неопределённостей. Теперь рассмотрим, какие этапы развития вселенной нам предлагает Википедия.

«Предметом данной статьи является современное представление об основных этапах развития Вселенной с момента её образования и до наших дней. Оно базируется на следующих теориях:
1. теории расширения Фридмана;
2. теории Большого взрыва (теории горячей Вселенной);
3. теории инфляции;
4. иерархической теории формирования крупномасштабной структуры;
5. теории звёздного населения.
Экстраполяция расширения Вселенной назад во времени приводит к точке космической сингулярности, вблизи которой ныне известные законы физики перестают работать. Время же расширения из этой космической сингулярности до современного состояния называют возрастом Вселенной; по различным данным, оно составляет приблизительно 14 млрд. лет».

Уже первая приведённая цитата ведёт к неопределённости. Из этого отрывка следует, что вселенная у нас образовалась одна. То же следует и из общего контекста статьи. Однако это противоречит наблюдательным данным. В статье правильно указывается, что галактики разбегаются. Но тогда вселенная не может быть одной, так как Интернет полон фотографий сливающихся галактик. Но раз некоторые галактики сливаются (соединяются), то вселенных должно быть много, по крайней мере, несколько. Ведь слиться могут только галактики разных вселенных, раз галактики одной и той же вселенной разбегаются. Не могут же галактики разлетаясь сближаться и, тем более, сливаться. Но это просто объясняется – галактики одной и той же вселенной разбегаются, но галактики разных вселенных могут и сближаться и сливаться. Это очень важный вывод, так как слившиеся галактики фактически объединяют вселенные, и их становится меньше числом. Но в Википедиевской статье о количестве вселенных ничего не говорится. Однако множественность вселенных имеют очень важные следствия: значит, «Больших взрывов» было много и самое главное, они не обязательно происходили в одно время. Значит, сливающиеся галактики имеют разный возраст, и, следовательно, разный срок эволюции звёзд. В одной слившейся галактике оказываются звёзды разного возраста.

Кроме того, в перечне теорий, на которых базируется земная теория мироздания, пропущена ещё одна теория о том, что наши привычные элементарные частицы – протоны, нейтроны и электроны – это и есть барионная материя, называемая веществом. Но это неверно вещество состоит из двух материй.

Продолжим цитировать Википедию.

«Момент образования реликтового фона является пограничным для эволюции вещества. Если до него она полностью определялась расширением, то после роль первой скрипки берет на себя гравитационное взаимодействие скоплений вещества, как друг с другом, так и с самим собой. Именно она отвечает за образование звёзд, звёздных скоплений галактик, а также слияние последних.
Отделение реликтового фона стало возможным благодаря остыванию Вселенной, вызванным расширением. Таким же процессом, предопределивший конец эпохи доминирования гравитации и порождённый ей — изменение химического состава из-за вспышек сверхновых звёзд».

Стало быть, до момента образования реликтового фона гравитация не действовала, или была существенно меньше сил обеспечивающих расширение. Но такие силы должны быть, иначе придётся признать, что расширение началось без причины. Так и следует из этой теории, так как о силах обеспечивающих расширение ничего не говорится, что является затруднением этой теории.

Продолжим цитировать Википедию:

"Планковская эпоха
Планковская эпоха — самая ранняя эпоха в истории наблюдаемой нами Вселенной, о которой существуют какие-либо теоретические предположения. В эту эпоху вещество Вселенной имело энергию ~10^19 ГэВ, плотность ~10^97 кг/м³ и находилось при температуре ~10^32 К. Ранняя Вселенная представляла собой высокооднородную и изотропную среду с необычайно высокой плотностью энергии, температурой и давлением. В результате расширения и охлаждения во Вселенной произошли фазовые переходы, аналогичные конденсации жидкости из газа, но применительно к элементарным частицам. Она закончилась по истечении планковского времени (10^−43 секунд после Большого Взрыва). После планковской эпохи гравитационное взаимодействие отделилось от остальных фундаментальных взаимодействий".

Удивительная наглость учёных - откуда ни возьмись появилось неизвестно что, толи жидкость, толи газ, толи плазма, но они уже назвали это неизвестно что "вещество" и знают точно её энергию, температуру и плотность. Хотя это было 14 млрд. лет назад и длилось в миллиарды раз меньше секунды.

"Современная космология полагает, что по окончании Планковской эпохи началась вторая фаза развития Вселенной — Эпоха Великого объединения, а затем нарушение симметрии быстро привело к эпохе космической инфляции, в течение которой Вселенная за короткий период очень сильно увеличилась в размерах.
Теоретические основы
Поскольку в настоящее время не существует общепринятой теории, позволяющей комбинировать квантовую механику и релятивистскую гравитацию, современная наука не может описать события, происходящие за время, меньшее, чем планковское время, и на расстояниях меньше планковской длины (примерно 1,616×10^−35 м — расстояние, которое проходит свет за планковское время).
Без понимания квантовой гравитации — теории, объединяющей квантовую механику и релятивистскую гравитацию, — физика Планковской эпохи остаётся неясной. Принципы, лежавшие в основе единства фундаментальных взаимодействий, а также причины и течение процесса их разделения до сих пор малоизучены.
Три из четырёх сил были успешно описаны в рамках единой теории, но проблема описания гравитации до сих пор не решена. Если не учитывать квантовые гравитационные эффекты, то получается, что Вселенная началась с сингулярности с бесконечной плотностью; учёт этих эффектов позволяет прийти к другим выводам.
Среди наиболее проработанных и перспективных кандидатов на объединяющую теорию — теория струн и петлевой квантовой гравитации. Кроме того, ведётся активная работа по некоммутативной геометрии и другим областям, позволяющим описать процессы зарождения Вселенной"

Таким образом, ничего не ясно, ничего непонятно, но работа идёт, всё кипит и всё сырое. И долго ещё будет кипеть, нелегко соединить бульдога с носорогом, или квантовую гравитацию (теории которой ещё нет) с релятивистской. И это хорошо, академикам есть что вставлять в тематические планы РАНовских институтов. Кстати, кто читал мои статьи по Новой парадигме гравитации уже знает и понимает, что это за зверь "квантовая гравитация" - это когда единичная корпускула темной (отрицательной) материи взаимодействует на притяжение с единичной корпускулой светлой (положительной) материи, но вот только такого в природе никогда не реализуется, т.к. две единичные противоположные корпускулы не встречаются.

"Экспериментальные данные, позволяющие обосновать предположения о Планковской эпохе, до недавнего времени практически отсутствовали, но последние результаты, полученные зондом WMAP, позволили учёным проверить гипотезы о первой 10^−12 доли секунды существования Вселенной (хотя реликтовое излучение, которое регистрировал WMAP, возникло, когда Вселенной было уже несколько сотен тысяч лет). Несмотря на то, что этот временной интервал по прежнему на много порядков больше, чем Планковское время, в настоящее время продолжаются эксперименты (включая проект «Планк»), имеющие многообещающие результаты, которые позволят отодвинуть границу «изученного» времени ближе к моменту возникновения Вселенной и возможно дадут сведения о Планковской эпохе.
Кроме того, некоторое понимание процессов в ранней вселенной дают данные с ускорителей частиц. Например, эксперименты в релятивистском коллайдере тяжелых ионов (RHIC) позволили определить, что кварк-глюонная плазма (одно из ранних состояний материи) ведёт себя скорее как жидкость, чем как газ. На Большом адронном коллайдере возможно исследовать ещё более ранние состояния материи, однако в настоящее время нет ни существующих, ни планируемых ускорителей, которые позволят получить энергии порядка Планковской энергии (около 1,22×10^19 ГэВ).

Слава Богу, хоть о планковской эпохе ничего не известно, было бы ещё лучше, если бы и об остальных эпохах нашим земным учёным было бы ничего не известно, но, к сожалению, слишком они много «знают» об остальных эпохах.

. Учёные совершенно напрасно стараются слить Общую теорию относительности и квантовую теорию гравитации. Нет, слить то теоретически можно всё, что угодно. Но в действительности гравитация не чисто квантовое явление. Кто читал первый выпуск настоящей серии, «Гравитация, новая парадигма», тот уже знает, что гравитация – это когда каждый протон, каждый нейтрон и каждое ядро атома (отдельная элементарная частица) взаимодействует на притяжение с большими массами ядер звёзд, планет и спутников, представленные сильно уплотнённым массивным и большим куском отрицательной (тёмной) материи. Таким образом, феноменологически гравитация является смесью классики и квантовой механики. Поэтому, чтобы создать чисто квантовую модель её, ортодоксам надо очень сильно постараться и хорошенько пофантазировать.

«Расширение Вселенной — это крупномасштабный процесс, ход которого, по сути, определяет ход её эволюции: из-за расширения средняя температура падает, определяя как долго и с какой скоростью будет идти первичный нуклеосинтез, на фоне расширения происходит и развитие флуктуаций, которые затем должны стать галактиками и так далее. Экспериментально расширение Вселенной проявляется в виде красного смещения спектральных линий удалённых галактик в соответствии с законом Хаббла, а также в виде удлинения времени видимого протекания различных процессов в них (длительность вспышек сверхновых и других).
Вселенная расширяется из начального сверхплотного и сверх горячего состояния — так называемый Большой взрыв. Является ли исходное состояние сингулярным (как предсказывает классическая теория гравитации — общая теория относительности или ОТО) или нет — активно дебатируемый вопрос, надежды на его разрешение связывают с разработкой квантовой теории гравитации.
Модель Фридмана
В рамках ОТО вся динамика Вселенной в первом приближении может быть сведена к простым дифференциальным уравнениям для масштабного фактора a(t) — величины, отражающей изменение расстояний в однородно расширяющихся или сжимающихся пространствах:
(формулы не привожу, все равно по ним никто ничего не считает)
где k — кривизна пространства (принимает значения −1, 0, 1), Λ — космологическая постоянная, ρ — средняя плотность Вселенной, P — среднее давление, с — скорость света, а точка над буквой обозначает взятие производной по времени, например, a=da/dt.
Для подобной модели интервал между двумя событиями записывается следующим образом:
где dR² описывает геометрические свойства пространства модели и является метрикой трёхмерного изотропного и однородного пространства: плоского при k=0, сферического при k=1 и гиперболического при k=−1. В таких системах координат скорость изменения физического расстояния l между двумя точками, покоящимися в сопутствующей системе координат, равна:
Это не что иное, как закон Хаббла, где параметр Хаббла есть меняющаяся от времени величина:
Если теперь подставить это выражение в уравнение энергии и привести значения, приходим к выражению:
где Ωm=8πGρ/3H2 , Ωk = -(kc2)/(a2H2) , ΩΛ=(Λc2)/(3H2)».

Всё это хорошо и возможно так бы и было, если бы пространство действительно имело кривизну. Однако по сведениям предоставленными нам высокоразвитой цивилизацией пространство не изгибается, не является вещественным, и не имеет структуры. Пространство всего лишь трёхмерно, «Время» не является физическим понятием, а придумано человеком. Время – это просто счётчик для нашего удобства. Поэтому весь вышеприведённый кусок текста является математическим шаманством и ничего не выражает. Это говорильня ни о чём.

«Инфляционное расширение

Большой взрыв
Согласно теории Большого взрыва, Вселенная в момент образования была в чрезвычайно плотном и горячем состоянии, называемом космологической сингулярностью
Большо́й взрыв (англ. Big Bang) — космологическая модель, описывающая раннее развитие Вселенной, а именно — начало расширения Вселенной, перед которым Вселенная находилась в сингулярном состоянии.
Обычно сейчас автоматически сочетают теорию Большого взрыва и модель горячей Вселенной, но эти концепции независимы и исторически существовало также представление о холодной начальной Вселенной вблизи Большого взрыва. Именно сочетание теории Большого взрыва с теорией горячей Вселенной, подкрепляемое существованием реликтового излучения, и рассматривается далее.
Космологическая сингулярность
Космологическая сингулярность — состояние Вселенной в начальный момент Большого Взрыва, характеризующееся бесконечной плотностью и температурой вещества. Космологическая сингулярность является одним из примеров гравитационных сингулярностей, предсказываемых общей теорией относительности (ОТО) и некоторыми другими теориями гравитации.
Возникновение этой сингулярности при продолжении назад во времени любого решения ОТО, описывающего динамику расширения Вселенной, было строго доказано в 1967 году Стивеном Хокингом. Также он писал:
«Результаты наших наблюдений подтверждают предположение о том, что Вселенная возникла в определённый момент времени. Однако сам момент начала творения, сингулярность, не подчиняется ни одному из известных законов физики».
Например, не могут быть одновременно бесконечными плотность и температура, так как при бесконечной плотности мера хаоса стремится к нулю, что не может совмещаться с бесконечной температурой. Проблема существования космологической сингулярности является одной из наиболее серьёзных проблем физической космологии. Дело в том, что никакие наши сведения о том, что произошло после Большого Взрыва, не могут дать нам никакой информации о том, что происходило до этого.
Попытки решения проблемы существования этой сингулярности идут в нескольких направлениях: во-первых, считается, что квантовая гравитация даст описание динамики гравитационного поля, свободного от сингулярностей, во-вторых, есть мнение, что учёт квантовых эффектов в негравитационных полях может нарушить условие энергодоминантности, на котором базируется доказательство Хокинга, в-третьих, предлагаются такие модифицированные теории гравитации, в которых сингулярность не возникает, так как предельно сжатое вещество начинает расталкиваться гравитационными силами (так называемое гравитационное отталкивание), а не притягиваться друг к другу.
Св. Августин утверждал, что время — это свойство вселенной, которое появилось вместе с ней самой. Поскольку однозначного научного объяснения такого парадокса не существует, Георгий Гамов предложил называть Августинской эпохой состояние Вселенной «до» и «в момент» Большого Взрыва. Такое состояние часто называется нулевой точкой или космологической сингулярностью».

Святой Августин – это конечно большой авторитет по всем вопросам и по времени особенно, тем более что он что-то там утверждал. Но почему Георгий Гамов не послушал другого авторитета - Иммануила Канта, который утверждал, довольно обоснованно, что время не физическое понятие, а придумано человеком, в основном для занятия наукой. Здесь Кант немного перебарщивает, конечно. Время придумано человеком не только для занятия наукой, но и для того, чтобы знать, когда вставать и когда спать ложиться, когда обедать и когда работать, то есть «время» человек придумал для своего удобства. Кроме того, этот кусок текста говорит о том, что писал его человек, начисто отравленный математическим формализмом, так как пишет, что вначале вселенная имела бесконечную плотность и бесконечную температуру. Настоящий физик не должен писать такого. Правда писатель этот ссылается на физическую теорию – Общую теорию относительности, она, мол, имеет такую предсказательную способность в точке, когда время равно нулю. Но по нашему мнению, из-за плохой предсказательной способности Общей теории относительности Хокингу надо было посчитать её несостоятельной, а не городить на её основе одну нелепость на другую и не умножать бесконечную плотность на бесконечную температуру.

«Первые три минуты. Первичный нуклеосинтез Основные ядерные реакции на этапе первичного нуклеосинтеза.
Предположительно, с начала рождения (или по крайне мере с конца инфляционной стадии) и в течение времени, пока температура остаётся не ниже 10^16 ГэВ (10^−10 с), присутствуют все известные элементарные частицы, причём все они не имеют массы. Этот период называется периодом Великого объединения, когда электрослабое и сильное взаимодействия едины.
На данный момент невозможно сказать, какие же именно частицы присутствуют в тот момент, но кое-что всё же известно. Величина η является показателем энтропии, а также характеризует избыток частиц над античастицами:
В момент, когда температура опускается ниже 10^15 ГэВ, вероятно, выделяются X- и Y-бозоны с соответствующими массами.
Эпоху Великого объединения сменяет эпоха электрослабого объединения, когда электромагнитное и слабое взаимодействия представляют единое целое. В эту эпоху идет аннигиляция X- и Y-бозонов. В момент, когда температура понижается до 100 ГэВ, эпоха электрослабого объединения заканчивается, образуются кварки, лептоны и промежуточные бозоны.
Настаёт адронная эра, эра активного рождения и аннигиляции адронов и лептонов. В эту эпоху примечателен момент кварк-адронного перехода или момент конфайнмента кварков, когда стало возможным слияние кварков в адроны. В этот момент температура равна 300—1000 МэВ, а время от рождения Вселенной составляет 10^−6 с.
Эпохе адронной эры наследует лептонная эра — в момент, когда температура падает до уровня 100 МэВ, а на часах 10^−4 с. В эту эпоху состав Вселенной начинает походить на современный; основные частицы — это фотоны, помимо них есть только электроны и нейтрино со своими античастицами, а также протоны и нейтроны. В этот период происходит одно важное событие: вещество становится прозрачным для нейтрино. Возникает что-то наподобие реликтового фона, но для нейтрино. Но так как отделение нейтрино произошло раньше отделения фотонов, когда некоторые виды частиц ещё не проаннигилировали, отдав свою энергию остальным, то и остыли они больше. К настоящему времени нейтринный газ должен был остыть до 1,9 К, если нейтрино не имеют массы (или их массы пренебрежимо малы).
При температуре Т≈0,7 МэВ термодинамическое равновесие между протонами и нейтронами, существовавшее до этого, нарушается и отношение концентрации нейтронов и протонов застывает на значении 0,19. Начинается синтез ядер дейтерия, гелия, лития. Спустя ~200 секунд после рождения Вселенной температура падает до значений, при которых нуклеосинтез более невозможен, и химический состав вещества остаётся неизменным до момента рождения первых звёзд».
Основные ядерные реакциина этапе первичного синтеза
Основные ядерные реакциина этапе первичного синтеза

Этот кусок текста восхитителен по бестолковости и алогичности. Вначале нам говорят, что к началу этих трёх секунд существования вселенной, все известные элементарные частицы уже присутствуют. И тут же строкой ниже говорится, что на этот момент невозможно сказать какие же именно элементарные частицы присутствуют на тот момент. А то, что они (эти пресловутые элементарные частицы) не имеют, кроме всего прочего, ещё и массы, это конечно шедевр. Потому, что он логичен с точки зрения релятивистской механики – по ней «масса» – это расчётная величина, а человека тогда, конечно же, не было и некому было рассчитать им эту пресловутую массу. Но шедевр этот нелогичен с точки зрения квантовой механики, так как утверждается, что все известные элементарные частицы уже присутствуют. Значит и бозон Хиггса, начиная с 2012 года уже присутствует. А раз так, то начиная с 2012 года все элементарные частицы не только должны, но и обязаны на тот период иметь массу. Воистину одну из этих наук надо упразднить, или релятивистскую механику, или квантовую механику, а лучше всего – обе. Кроме того, плотность у вселенной была, а массы у элементарных частиц - не было, очень интересная у ортодоксов вселенная.

Обратите внимание, господа читатели, что здесь уже и температуру начали приводить в электрон-вольтах. То есть размерности массы, энергии, работы и температуры стали одинаковыми. Намёк на то, что всё это одно и тоже. Кроме того, частицы не успев возникнуть, начинают аннигилировать. Зачем было возникать? И почему им следует аннигилировать? Никак не объясняется. Лепят всё подряд, что в бошку придёт, ничего не объясняя.

"Эпоха Великого Объединения (далее по тексту — ЭВО) — понятие, применяемое в космологии для определения второй фазы развития Вселенной. На основании космологической модели Вселенной, которая расширяется, принято считать, что ЭВО началась в момент времени с ~10^−43 секунд, когда плотность материи составляла 10^92 г/см³, а температура — 10^32 К. Фазовый переход вызвал экспоненциальное расширение Вселенной, что вызвало переход к эпохе инфляции.
Основные положения ЭВО
В физической космологии, предполагая, что природу описывает ТВО, ЭВО была периодом в эволюции ранней вселенной, следующим за Планковской эпохой и предшествовавшим Инфляционной эпохе. С момента начала ЭВО квантовые эффекты слабеют и вступают в силу законы ОТО. Отделение гравитационного взаимодействия от остальных фундаментальных взаимодействий на границе эпох — Планковской и Великого объединения — привело к одному из фазовых переходов первичной материи, сопровождавшегося нарушением однородности её плотности. После отделения гравитации (первое отделение) от объединения фундаментальных взаимодействий в конце Планковской эпохи, три из четырёх взаимодействий — электромагнитное, сильное и слабое взаимодействия — все ещё оставались объединенными как электроядерное взаимодействие. В течение Эпохи Великого Объединения, такие физические характеристики как, например масса, аромат и цвет были бессмысленны.
Считается, что во время ЭВО температура Вселенной была сопоставима с характерными температурными градиентами теории объединения. Если энергию великого объединения принять 10^15 ГэВ, это будет соответствовать температурам выше 10^27 K.
Принято считать, что ЭВО закончилась приблизительно в 10^−34 секунд с момента Большого Взрыва, когда плотность материи составляла 10^74 г/см³, а температура 10^27 K, что соответствует энергии 10^14 ГэВ — в этот момент времени от первичного взаимодействия отделяется сильное ядерное взаимодействие, которое начинает играть принципиальную роль в создавшихся условиях. Это отделение привело к следующему фазовому переходу и, как следствие, масштабному расширению Вселенной — инфляционное расширение Вселенной и значительные изменения плотности вещества и его распределения во Вселенной.
Эпоха раздувания (инфляции)
Между 10^−36 и 10^−32 с после Большого Взрыва. В эту эпоху Вселенная всё ещё преимущественно заполнена излучением, начинают образовываться кварки, электроны и нейтрино. На ранних стадиях эпохи расширения, образующиеся кварки и гипероны (которые забирают энергию от фотонов) быстро распадаются. Предполагают существование циклов чередующихся нагрева и повторного охлаждения Вселенной. После окончания этого периода строительный материал Вселенной представлял собой кварк-глюонную плазму. По прошествии времени температура упала до значений, при которых стал возможен следующий фазовый переход, называемый бариогенезисом. Дальнейшее падение температуры привело к следующему фазовому переходу — образованию физических сил и элементарных частиц в их современной форме, что привело через эпоху электрослабых взаимодействий[⇨], эпоху кварков[⇨], эпоху адронов[⇨], эпоху лептонов[⇨] к переходу к эпохе нуклеосинтеза[⇨].
Бариогенезис
Бариогенез — состояние Вселенной на промежутке времени 10^−35—10^−31 секунд с момента Большого Взрыва (Инфляционная эпоха), во время которого происходило объединение кварков и глюонов в адроны (в том числе в барионы), а также название самого процесса такого объединения. Считается, что вследствие выполнения условий Сахарова (несохранение барионного числа, CP-нарушение, нарушение теплового равновесия) во время бариогенезиса возникла так называемая барионная асимметрия Вселенной — наблюдающаяся асимметрия между материей и антиматерией (в современной Вселенной присутствует почти исключительно первая).
Барионная асимметрия Вселенной
Барио́нная асимметри́я Вселе́нной — наблюдаемое преобладание в видимой части Вселенной вещества над антивеществом. Этот наблюдательный факт не может быть объяснён в предположении исходной барионной симметрии во время Большого взрыва ни в рамках Стандартной модели, ни в рамках общей теории относительности — двух теорий, являющихся основой современной космологии. Наряду с пространственной плоскостностью наблюдаемой Вселенной и проблемой горизонта он представляет собой один из аспектов проблемы начальных значений в космологии.
Существует несколько гипотез, пытающихся объяснить явление барионной асимметрии, однако ни одна из них не признана научным сообществом достоверно доказанной.
Наиболее распространены теории, расширяющие Стандартную модель таким образом, что в некоторых реакциях возможно более сильное нарушение CP-инвариантности по сравнению с её нарушением в Стандартной модели. В этих теориях предполагается, что изначально количество барионной и антибарионной материи было одинаково, однако впоследствии в силу каких-либо причин из-за несимметричности реакций относительно того, какие частицы — вещества или антивещества — в них участвуют, произошло постепенное нарастание количества барионного вещества и уменьшение количества антибарионного. Подобные теории возникают естественным образом в моделях великого объединения.
Другие возможные сценарии возникновения асимметрии привлекают либо макроскопическое разделение областей локализации вещества и антивещества (что представляется маловероятным), либо поглощение антивещества чёрными дырами, способными отделить его от вещества при условии нарушения CP-инвариантности. Последний сценарий требует существования гипотетических тяжёлых частиц, распадающихся с сильным нарушением CP-инвариантности.
Викиновости по теме:
Учёные предполагают, что барионная асимметрия связана с тёмной материей
В 2010 году была выдвинута гипотеза, что барионная асимметрия связана с наличием тёмной материи. Согласно сделанному предположению носителем отрицательного барионного заряда являются частицы тёмной материи, не доступные для непосредственного наблюдения в земных экспериментах, но проявляющихся через гравитационное взаимодействие на масштабах галактик.
Эпоха электрослабых взаимодействий
Между 10^−32 и 10^−12 секунд после Большого Взрыва. Температура Вселенной всё ещё очень высока. Поэтому электромагнитные взаимодействия и слабые взаимодействия пока представляют собой единое электрослабое взаимодействие. За счёт очень высоких энергий образуется ряд экзотических частиц, таких как бозон Хиггса и W-бозон, Z-бозон.
Эпоха кварков
Между 10−12 и 10−6 с после Большого Взрыва. Электромагнитное, гравитационное, сильное, слабое взаимодействия формируются в их современном состоянии. Температуры и энергии все ещё слишком велики, чтобы кварки группировались в адроны. Также называется эпохой кварк-глюонной плазмы.
Эпоха адронов
Между 10−6 и 100 с после Большого Взрыва. Кварк-глюонная плазма охлаждается, и кварки начинают группироваться в адроны, включая, например, протоны и нейтроны. Через время порядка 2 с после Большого Взрыва нейтрино высвобождаются и начинают свободно двигаться в пространстве. Наблюдаемые и сегодня, эти частицы ведут себя аналогично фоновому реликтовому излучению (которое возникло значительно позже их).
Эпоха лептонов
Между 100 с и 3 мин после Большого Взрыва. Размер наблюдаемой Вселенной тогда был меньше сотни астрономических единиц. В ходе адронной эпохи большая часть адронов и антиадронов аннигилируют (взаимоуничножаются) друг с другом и оставляют пары лептонов и антилептонов преобладающей массой во Вселенной. Приблизительно через 3 с после Большого Взрыва температура опускается до значения, при котором лептоны более не образуются. Лептоны и антилептоны, в свою очередь, аннигилируют друг с другом, и во Вселенной остаётся лишь небольшой остаток лептонов.
Эпоха нуклеосинтеза
Приблизительно с 100 секунды после Большого Взрыва материя охладилась достаточно для образования стабильных нуклонов, и начался процесс первичного нуклеосинтеза. Он длился до возраста Вселенной 3 минуты, и за это время образовался первичный состав звёздного вещества: около 25 % гелия-4, 1 % дейтерия, следы более тяжёлых элементов до бора, остальное — водород».

Вот так, господа читатели, мы никак не можем продвинуться дальше трёх минут после Большого взрыва. Это удивительно, ведь большую часть этих трёх минут у материи не было массы, бозоны Хиггса появились относительно недавно, а известны стали вообще в новейшее время, только в 2012 году от Рождества Христова. Значит, время не замедлялось массой, а имело нормальную скорость большую часть этих трёх минут, но они очень долго длились (как миллиарды лет). Остаётся только считать, что вся эта материя двигалась с около световыми скоростями, тогда понятное дело, время замедлялось. Но не могла же материя двигаться со скоростями свыше скорости света? Хотя в любом случае фотоны по теории должны были опередить всю остальную материю и улететь в неизвестном направлении, наверное, за пределы вселенной. Тогда, как же Солнце посылает нам ежесекундно огромное число фотонов? Откуда оно их берёт, если первыми образуются фотоны, нейтрино и кварки. Ведь все фотоны, образовавшиеся тогда, должны были опередить нейтрино и кварки, с какой бы скоростью не двигались последние. Нейтрино не могут содержать в себе фотонов по определению, и мы думаем, что с этим согласятся и ортодоксы. Остаётся предположить, что фотоны осели в кварках. Но так тоже не получается, так как кварки и гипероны быстро распадаются в эпоху раздувания и высвобождают фотоны, и фотоны должны были куда-то улететь. Однако если вспомнить Стандартную модель атома, то и в кварках нет фотонов. Они, оказывается, сидят в Бозонах Хиггса, которые образовались гораздо позже самих фотонов. Так что все фотоны должны были разлететься за время в течение 3 минут от Большого взрыва. Но этого не произошло, Солнце всё ещё светит. Это непреодолимое противоречие этой теории. Всё на ней можно поставить крест и объявить полностью несостоятельной. Но это ещё цветочки. В эпоху лептонов у нас взаимно уничтожились адроны и анти адроны. А потом взаимно уничтожились лептоны и анти лептоны. Остался только небольшой запас лептонов. Получается, что нуклеосинтез начался из лептонов? А из чего же электроны? Вот стандартная модель.

Стандартная модель. Ортодоксы предпочитают не писать чего модель.
Стандартная модель. Ортодоксы предпочитают не писать чего модель.

Чаще всего ортодоксы предпочитают не писать модель чего эта пресловутая стандартная модель. Это потому, что вообще-то это стандартная модель атома, т.к. ортодоксы считают, что все эти частицы периодически появляются и исчезают в атоме. Но так писать бояться -
слишком много у них частиц в "нуклонном ядре атома" собралось. Сейчас они нашли выход и пишут, что эта Стандартная модель элементарныхз частиц. Однако продолжим. Вдруг ортодоксы найдут в себе силы преодолеть все эти затруднение.

«Протонная эпоха. Между 3 мин и 380 000 лет после Большого Взрыва. Нуклеосинтез гелия, дейтерия, следов лития-7 (20 минут). Вещество начинает доминировать над излучением (70 000 лет), что приводит к изменению режима расширения Вселенной. В конце эпохи (380 000 лет) происходит рекомбинация водорода, и Вселенная становится прозрачной для фотонов теплового излучения. После дальнейшего падения температуры и расширения Вселенной наступил следующий переходный момент, при котором гравитация стала доминирующей силой
Эпоха первичной рекомбинации
Вселенная постепенно охлаждалась и через 379 000 лет после Большого Взрыва стала достаточно холодной (3000 К): замедлившиеся электроны получили возможность соединяться с замедлившимися протонами (ядрами водорода) и альфа-частицами (ядрами гелия), образуя атомы (этот процесс называется рекомбинацией). Таким образом, из состояния плазмы, непрозрачного для большей части электромагнитного излучения, материя перешла в газообразное состояние. Тепловое излучение той эпохи мы можем непосредственно наблюдать в виде реликтового излучения».

Теперь дело пошло побыстрее, какой колоссальный скачок от 3 минут до 379000 лет. Замедлившиеся электроны, соединились с замедлившимися протонами и образовали водород? Непонятно откуда взялись электроны, ведь раньше про них ничего не писали. Непонятно, также, почему электроны не упали на протоны, а стали обращаться вокруг протонов? Ведь ядра протия, это совершенно особые ядра, в них нет внутриядерных и обменных взаимодействий. Хотя первые фотоны не нашлись и куда-то улетели, они опять начали генерироваться из чего-то

«Тёмные века
Между 380 000 лет и 550 млн. лет после Большого взрыва. Вселенная заполнена водородом и гелием, реликтовым излучением, излучением атомарного водорода на волне 21 см. Звёзды, квазары и другие яркие источники отсутствуют».

Дело ускоряется, счёт пошёл на миллионы лет. Жаль, что всё происходит в темноте. Но понятно почему – фотоны-то улетели куда-то за три минуты после Большого взрыва. Однако посмотрим, что дальше, возможно найдутся фотоны. Дикая какая-то теория всё взаимоуничтожилось, фотоны куда-то улетели, а вселенная заполнилась водородом и гелием. Откуда же они взялись? Про электроны вообще ничего не пишут. Они, наверное, с неба свалились. Звёзд ещё нет. Это ничего. Гравитация нам всё слепит и звёзды и луны и квазары и чёрные дыры.

«Реионизация
Реионизация (эпоха реионизации, повторная ионизация, вторичная ионизация водорода) — часть истории Вселенной (эпоха) между 550 млн. лет и 800 млн. лет после Большого взрыва (примерно, красное смещение от z=15 до z=6.4). Реионизации предшествуют тёмные Века. А после неё — текущая эра вещества. Образуются первые звёзды (звёзды населения III), галактики, квазары, скопления и сверхскопления галактик. Реионизация водорода светом звёзд и квазаров. Скорость реионизации зависела от темпов формирования объектов во Вселенной. За счёт гравитационного притяжения вещество во Вселенной начинает распределяться по обособленным скоплениям («кластерам»). По всей видимости, первыми плотными объектами в тёмной Вселенной были квазары. Затем начали образовываться ранние формы галактик и газопылевых туманностей. Начинают образовываться первые звёзды, в которых происходит синтез элементов тяжелее гелия. В астрофизике любые элементы тяжелее гелия называют «металлами».
11 июля 2007 года Ричард Эллис[en] (Калифорнийский технологический институт) на 10-метровом телескопе Keck II обнаружил 6 звёздных скоплений, которые образовались 13,2 миллиардов лет тому назад. Таким образом, они возникли, когда Вселенной было только 500 миллионов лет.
Звёздообразование
Звёздообразование — астрофизический термин, обозначающий крупномасштабный процесс в галактике, при котором массово начинают формироваться звезды из межзвёздного газа. Спиральные ветви, общая структура галактики, звёздное население, светимость и химический состав межзвёздной среды — все это результат данного процесса.
Размер области, охваченной звёздообразованием, как правило, не превышает 100 пк. Однако встречаются комплексы со вспышкой звёздообразования, называемые сверхассоциациями, размерами сопоставимые с неправильной галактикой.
В нашей и нескольких ближайших галактиках возможно непосредственное наблюдение процесса. В таком случае признаками происходящего звёздообразования являются:
наличие звёзд спектральных классов O-B-A и связанных с ними объектов (области HII, вспышки новых и сверхновых звёзд);
инфракрасное излучение, как от нагретой пыли, так и от самих молодых звёзд;
радиоизлучение газопылевых дисков вокруг формирующихся и новорождённых звёзд;
доплеровское расщепление молекулярных линий во вращающемся диске вокруг звёзд;
доплеровское расщепление молекулярных линий тонких быстрых струй (джетов), вырывающихся из этих дисков (с их полюсов) со скоростью примерно 100 км/с;
наличие ассоциаций, скоплений и звёздных комплексов с массивными звёздами (массивные звёзды почти всегда рождаются большими группами);
наличие глобул.
С увеличением расстояния уменьшается и видимый угловой размер объекта, и, начиная с некоторого момента, разглядеть отдельные объекты внутри галактики не представляется возможным. Тогда критериями протекающего в далёких галактиках звёздообразования служат:
высокая светимость в эмиссионных линиях, в частности, в Hα;
повышенная мощность в ультрафиолетовой и голубой части спектра, за которую непосредственно отвечает излучение массивных звёзд;
повышенное излучение на длинах волн вблизи 8 мкм (ИК диапазон);
повышенная мощность теплового и синхротронного излучения в радиодиапазоне;
повышенная мощность рентгеновского излучения, связанная с горячим газом.
В общем виде процесс звёздообразования можно разделить на несколько этапов: формирование крупных газовых комплексов (с массой 107 Мʘ), появление в них гравитационно связанных молекулярных облаков, гравитационное сжатие наиболее плотных их частей до возникновения звёзд, нагрев газа излучением молодых звёзд и вспышки новых и сверхновых, уход газа.
Чаще всего области звёздообразования можно найти:
в ядрах крупных галактик,
на концах спиральных рукавов,
на периферии неправильных галактик,
в наиболее яркой части карликовой галактики.
Звёздообразование является саморегулирующимся процессом: после формирования массивных звёзд и их короткой жизни происходит ряд мощных вспышек, уплотняющих и нагревающих газ. С одной стороны, уплотнение приводит к ускорению сжатия сравнительно густых облачков внутри комплекса, но с другой стороны нагретый газ начинает покидать область звёздообразования, и чем больше его нагревают, тем быстрее он уходит.
Наиболее массивные звёзды живут сравнительно недолго — несколько миллионов лет. Факт существования таких звёзд означает, что процессы звёздообразования не завершились миллиарды лет назад, а имеют место и в настоящую эпоху.
Звёзды, масса которых многократно превышает массу Солнца, большую часть жизни обладают огромными размерами, высокой светимостью и температурой. Из-за высокой температуры они имеют голубоватый цвет, и поэтому их называют голубыми сверхгигантами. Такие звёзды, нагревая окружающий межзвёздный газ, приводят к образованию газовых туманностей. За свою сравнительно короткую жизнь массивные звезды не успевают сместиться на значительное расстояние от места своего возникновения, поэтому светлые газовые туманности и голубые сверхгиганты могут рассматриваться в качестве индикаторов тех областей Галактики, где недавно происходило или происходит и сейчас образование звёзд.
Молодые звёзды распределены в пространстве неслучайным образом. Существуют обширные области, где они совсем не наблюдаются, и районы, где их сравнительно много. Больше всего голубых сверхгигантов наблюдается в области Млечного Пути, то есть вблизи плоскости Галактики, там, где концентрация газопылевого межзвёздного вещества особенно высока.
Но и вблизи плоскости Галактики молодые звёзды распределены неравномерно. Они почти никогда не встречаются поодиночке. Чаще всего эти звезды образуют рассеянные скопления и более разреженные звёздные группировки больших размеров, названные звёздными ассоциациями, которые насчитывают десятки, а иногда и сотни голубых сверхгигантов. Самые молодые из звёздных скоплений и ассоциаций имеют возраст менее 10 млн. лет. Почти во всех случаях эти молодые образования наблюдаются в областях повышенной плотности межзвёздного газа. Это указывает на то, что процесс звёздообразования связан с межзвёздным газом.
Примером области звёздообразования является гигантский газовый комплекс в созвездии Ориона. Он занимает на небе практически всю площадь этого созвездия и включает в себя большую массу нейтрального и молекулярного газа, пыли и целый ряд светлых газовых туманностей. Образование звёзд в нём продолжается и в настоящее время.
Основные сведения
Для начала процесса образования звёзд из межзвёздных газопылевых туманностей в галактиках требуется наличие вещества в космосе, которое находится в состоянии гравитационной неустойчивости по тем или иным причинам. Например, триггером могут служить близкие от облака взрывы сверхновых типов Ib\c и II, близость к массивным звёздам с интенсивным излучением и наличие внешних магнитных полей, таких, как магнитное поле Млечного Пути. В основном процесс звёздообразования происходит в облаках ионизированного водорода или областях H II. В зависимости от типа галактики, интенсивное образование звёзд происходит либо в случайно распределённых областях, либо в областях, упорядоченных в спиральные структуры галактик. Звёздообразование носит характер «локальных вспышек». Время «вспышки» непродолжительно, порядка нескольких миллионов лет, масштаб — до сотен парсек.
Состав областей межзвёздного газа, из которых произошло формирование звёзд, определяет их химический состав, что позволяет произвести датировку формирования конкретной звезды или отнести её к определённому типу звёздных населений. Более старые звёзды формировались в областях, в которых практически не было тяжёлых элементов и, соответственно, лишены этих элементов в своих атмосферах, что определяется на основании спектральных наблюдений. Кроме спектральных характеристик, первоначальный химический состав звезды оказывает влияние на её дальнейшую эволюцию и, например, на температуру и цвет фотосферы.
По количеству звёзд того или иного населения определяется скорость звёздообразования в определённой области на протяжении продолжительного времени. Суммарную массу возникающих звёзд в один год называют темпом звёздообразования (SFR, Star Formation Rate).
Процесс звёздообразования является одним из основных предметов изучения дисциплины астрофизика. С точки зрения эволюции Вселенной является важным знание истории темпа звёздообразования. По современным данным в Млечном Пути сейчас преимущественно образуются звезды с массами 1 — 10 M☉.
Основные процессы
Базовые процессы звёздообразования включают в себя возникновение гравитационной неустойчивости в облаке, формирование аккреционного диска и начало термоядерных реакций в звезде. Последнее также иногда называется рождением звезды. Начало термоядерных реакций, как правило, останавливает рост массы формирующегося небесного тела и способствует образованию новых звёзд в её окрестности (см., например, Плеяды, Гелиосфера).
Формирование звёзд
В отличие от термина Звёздообразование, термин Формирование звёзд относится к физическому процессу образования конкретных звёзд из газопылевых туманностей.
Возникновение и эволюция галактик
Основная статья: Возникновение и эволюция галактик
Возникновение галактик — появление крупных гравитационно-связанных скоплений материи, имевшее место в далёком прошлом Вселенной. Началось с конденсации нейтрального газа, начиная с окончания тёмных Веков. На данный момент удовлетворительной теории возникновения и эволюции галактик не существует. Есть несколько конкурирующих теорий, объясняющих это явление, но каждая имеет свои серьёзные проблемы.
Образование и коллапс протогалактических облаков в представлении художника.
Как показывают данные по реликтовому фону, в момент отделения излучения от вещества Вселенная была фактически однородна, флуктуации вещества были крайне малыми, и это представляет собой значительную проблему. Вторая проблема — ячеистая структура сверхскоплений галактик и одновременно сфероподобная — у скоплений меньших размеров. Любая теория, пытающаяся объяснить происхождение крупномасштабной структуры Вселенной, в обязательном порядке должна решить эти две проблемы (а также верно смоделировать морфологию галактик).
Современная теория формирования крупномасштабной структуры, как впрочем, и отдельных галактик, носит названия «иерархическая теория». Суть теории сводится к следующему: вначале галактики были небольшие по размеру (примерно как Магелланово облако), но со временем они сливаются, образуя все большие галактики.
В последнее время верность теории поставлена под вопрос и не в малой степени этому способствовал downsizing. Однако в теоретических исследованиях эта теория является доминирующей. Наиболее яркий пример подобного изыскания — Millennium simulation (Millennium run).
Иерархическая теория
Согласно первой, после возникновения первых звёзд во Вселенной начался процесс гравитационного объединения звёзд в скопления и далее в галактики. В последнее время эта теория поставлена под сомнение. Современные телескопы способны «заглянуть» так далеко, что видят объекты, существовавшие приблизительно через 400 тыс. лет после Большого взрыва. Обнаружилось, что через 400 млн. лет после Большого Взрыва уже существовали сформировавшиеся галактики. Предполагается, что между возникновением первых звёзд и вышеуказанным периодом развития Вселенной прошло слишком мало времени, и галактики сформироваться не успели бы.
Общие положения
Любая теория, так или иначе, предполагает, что все современные образования, начиная от звезд и заканчивая сверхскоплениями, образовались в результате коллапса первоначальных возмущений. Классическим случаем является неустойчивость Джинса, в которой рассматривается идеальная жидкость, которая создаёт гравитационный потенциал в соответствии с законом тяготения Ньютона. В этом случае из уравнений гидродинамики и потенциала получается, что размер возмущения, при котором начинается коллапс, составляет:
(формулу не привожу, нет смысла считать, не было и нет никаких коллапсов первичных возмущений)
где us — скорость звука в среде, G — гравитационная постоянная, а ρ — плотность невозмущённой среды. Подобное рассмотрение можно провести и на фоне расширяющей Вселенной. Из-за удобства в этом случае рассматривают величину относительной флуктуации
Тогда классические уравнения примут следующий вид:
У этой системы уравнений есть только одно решение, которое возрастает со временем. Это уравнение продольных колебаний плотности:
Из него, в частности, следует, что нестабильными являются флуктуации точно такого же размера, что и в статическом случае. А растут возмущения линейным образом или слабее, в зависимости от эволюции параметра Хаббла и плотности энергии.
Модель Джинса адекватно описывает коллапс возмущений в нерелятивистской среде, если их размер гораздо меньше текущего горизонта событий (в том числе и для тёмной материи во время радиационно-доминированной стадии). Для противоположных случаев необходимо рассматривать точные релятивистские уравнения. Тензор энергии-импульса идеальной жидкости с учётом малых возмущений плотности
ковариантно сохраняется, из чего следуют уравнения гидродинамики, обобщённые для релятивистского случая. Вместе с уравнениями ОТО они представляют исходную систему уравнений, определяющих эволюцию флуктуаций в космологии на фоне решения Фридмана.
Инфляционная теория
Другая распространённая версия заключается в следующем. Как известно, в вакууме постоянно происходят квантовые флуктуации. Происходили они и в самом начале существования Вселенной, когда шёл процесс инфляционного расширения Вселенной, расширения со сверхсветовой скоростью. Это значит, что расширялись и сами квантовые флуктуации, причём до размеров, возможно, в 101112 раз превышающих начальный. Те из них, которые существовали в момент прекращения инфляции, остались «раздутыми» и таким образом оказались первыми тяготеющими неоднородностями во Вселенной. Получается, что у материи было порядка 400 млн. лет на гравитационное сжатие вокруг этих неоднородностей и образование газовых туманностей. А далее начался процесс возникновения звёзд и превращения туманностей в галактики.
Протогалактика
Протогалактика («первобытная галактика»; англ. protogalaxy, primeval galaxy): в физической космологии — облако межзвёздного газа на стадии превращения в галактику. Считается, что темпы звездообразования в этот период галактической эволюции определяют спиральную или эллиптическую форму будущей звёздной системы (более медленное формирование звёзд из локальных сгустков межзвёздного газа обычно приводит к возникновению галактики спиральной формы). Термин «протогалактика» используется главным образом при описании ранних фаз развития Вселенной в рамках теории Большого взрыва.
Изучение
Телескоп «Уэбб» сможет рассказать о том, когда и где началась реионизация Вселенной и что её вызвало».
Пока, господа читатели, к сожалению, нам не удалось обнаружить фотоны, которые образовались за первые три минуты после Большого взрыва. Из-за этого вопрос, почему же светятся звёзды квазары и другие объекты, например, чёрные дыры в центрах галактик остаётся открытым. Это очень большое затруднение всех объединённых теорий, которые мы уже рассмотрели. ПО теории процесс образования звёзд как начался миллиарды лет назад, так и продолжается сам собой до настоящего времени из газопылевых туманностей. Но откуда взялась пыль для первых звёзд, вот в чём вопрос? Ведь были только гелий и водород.
Продолжим цитировать Википедию. «Эра вещества
Начиная с 800 млн. лет после Большого взрыва. Около 2.7 млрд. лет назад закончилась реионизация первичного гелия. Образование межзвёздного облака, давшего начало Солнечной системе. Образование Земли и других планет нашей Солнечной системы, затвердевание пород.
Формирование планет
Ясности в том, какие процессы идут при формировании планет и какие из них доминируют, до сих пор нет. Обобщая наблюдательные данные, можно утверждать лишь то, что:
Они образуются ещё до момента рассеяния протопланетного диска.
Значительную роль в формировании играет аккреция.
Обогащение тяжелыми химическими элементами идет за счет планетезималей.
Таким образом, отправная точка всех рассуждений о пути формирования планет — газопылевой (протопланетный) диск вокруг формирующейся звезды. Сценариев, как из него получились планеты, существует два типа]:
Доминирующий на данный момент — аккреционный. Предполагает формирования из первоначальных планетозималей.
Второй полагает, что планеты сформировались из первоначальных «сгущений», впоследствии сколлапсировавших.
Окончательно формирование планеты прекращается, когда в молодой звезде зажигаются ядерные реакции и она рассеивает протопланетный диск, за счет давления солнечного ветра, эффекта Пойнтинга — Робертсона и прочих.
Аккреционный сценарий
Вначале из пыли образуются первые планетозимали. Существует две гипотезы, как это происходит:
Одна утверждает, что они растут из-за парного столкновения очень маленьких тел.
Вторая — что планетозимали формируются в ходе гравитационного коллапса в средней части протопланетного газопылевого диска.
По мере роста возникают доминирующие планетозимали, которые впоследствии станут протопланетами. Расчёт темпов их роста довольно разнообразен. Однако базой для них служат уравнение Сафронова:
(формулы не привожу всё это ортодоксальный бред)
где R — размер тела, a — радиус его орбиты, M* — масса звезды, Σp — поверхностная плотность планетозимальной области, а FG — так называемый параметр фокусировки, ключевой в данном уравнении, для различных ситуаций он определяется по-своему. Расти такие тела могут не до бесконечности, а ровно до того момента пока есть небольшие планетозимали в их окрестностях, пограничная масса (так называемой массой изоляции) при этом получается:
В типичных условиях она варьирует от 0,01 до 0,1 M⊕ — это уже является протопланетой. Дальнейшее развитие протопланеты может следовать по следующим сценариям, один из которых приводит к образованию планет с твёрдой поверхностью, другой — к газовым гигантам.
В первом случае, тела с изолированной массой тем или иным образом увеличивают эксцентриситет и их орбиты пересекаются. В ходе череды поглощений более мелких протопланет образуются планеты подобные Земле.
Планета-гигант может образоваться, если вокруг протопланеты останется много газа из протопланетного диска. Тогда в роли ведущего процесса дальнейшего приращения массы начинает выступать аккреция. Полная система уравнений описывающий данный процесс:
Смысл выписанных уравнений следующий (1) — предполагается сферическая симметрия и однородность протопланеты, (2) предполагается, что имеет место гидростатическое равновесие, (3) Нагрев идёт при столкновении с планетозималями, а охлаждение происходит только за счёт излучения. (4) — уравнения состояние газа.
Рост ядра будущей планеты-гиганта продолжается до M~10⊕[источник не указан 2981 день]. Примерно на этом этапе гидростатическое равновесие нарушается. С этого момента весь аккрецирующий газ уходит на формирование атмосферы планеты-гиганта.
Трудности аккреционного сценария
Первые же трудности возникают в механизмах формирования планетозималей. Общей проблемой для обеих гипотез является проблема «метрового барьера»: любое тело в газовом диске постепенно сокращает радиус своей орбиты, и на определённом расстоянии просто сгорит. Для тел размером порядка одного метра, скорость подобного дрейфа наибольшая, а характерное время гораздо меньше необходимого, чтобы планетозималь значительно увеличила свой размер.
Кроме того, в гипотезе слияния метровые планетозимали при столкновении скорее разрушатся на многочисленные мелкие части, нежели образуют единое тело.
Для гипотезы формирования планетозималей в ходе фрагментации диска, классической проблемой была турбулентность. Однако, возможное её решение, а заодно и проблемы метрового барьера, было получено в недавних работах. Если в ранних попытках решений основной проблемой являлась турбулентность, то в новом подходе этой проблемы нет как таковой. Турбулентность может сгруппировать плотные твёрдые частицы, а вместе с потоковой неустойчивостью возможно образование гравитационно-связанного кластера, за время гораздо меньшее, чем время дрейфа к звезде метровых планетозималей.
Вторая проблема — это сам механизм роста массы:
Наблюдаемое распределение размеров в поясе астероидов невозможно воспроизвести в данном сценарии. Скорее всего, первоначальные размеры плотных объектов 10—100 км. Но это значит, что средняя скорость планетозималей снижается, а значит, снижается скорость формирования ядер. И для планет-гигантов это становится проблемой: ядро не успевает сформироваться до того, как протопланетный диск рассеется.
Время роста массы сравнимо с масштабом некоторых динамических эффектов, способных повлиять на темпы роста. Однако произвести достоверные расчёты на данный момент не предоставляется возможным: одна планета с околоземной массой должна содержать не менее 108 планетозималей.
Сценарий гравитационного коллапса
Как и в любом самогравитирующем объекте, в протопланетном диске могут развиваться нестабильности. Впервые эту возможность рассмотрел Тумре (Toomre) в 1981 году. Оказалось, что диск начинает распадаться на отдельные кольца если
где cs — скорость звука в протопланетном диске, k — эпициклическая частота.
Сегодня параметр Q носит название «параметр Тумре», а сам сценарий называется неусточивостью Тумре. Время, за которое диск будет разрушен, сравнимо со временем охлаждения диска и высчитывается сходным образом со временем Гельмгольца для звезды.
Трудности сценария гравитационного коллапса
Требуется сверхмассивный протопланетный диск.
Возникновение жизни
Возникновение жизни или абиогенез — процесс превращения неживой природы в живую.
В узком смысле слова под абиогенезом понимают образование органических соединений, распространённых в живой природе, вне организма без участия ферментов.
Формирование и эволюция Солнечной системы
Согласно современным представлениям, формирование Солнечной системы началось около 4,6 млрд. лет назад с гравитационного коллапса небольшой части гигантского межзвёздного молекулярного облака. Большая часть вещества оказалась в гравитационном центре коллапса с последующим образованием звезды — Солнца. Вещество, не попавшее в центр, сформировало вращающийся вокруг него протопланетный диск, из которого в дальнейшем сформировались планеты, их спутники, астероиды и другие малые тела Солнечной системы.
Формирование Солнечной системы
Гипотеза об образовании Солнечной системы из газопылевого облака — небулярная гипотеза — первоначально была предложена в XVIII веке Эммануилом Сведенборгом, Иммануилом Кантом и Пьером-Симоном Лапласом. В дальнейшем её развитие происходило с участием множества научных дисциплин, в том числе астрономии, физики, геологии и планетологии. С началом космической эры в 1950-х годах, а также с открытием в 1990-х годах планет за пределами Солнечной системы (экзопланет), эта модель подверглась многократным проверкам и улучшениям для объяснения новых данных и наблюдений.
Согласно общепринятой в настоящее время гипотезе, формирование Солнечной системы началось около 4,6 млрд. лет назад с гравитационного коллапса небольшой части гигантского межзвёздного газопылевого облака. В общих чертах, этот процесс можно описать следующим образом:
Спусковым механизмом гравитационного коллапса стало небольшое (спонтанное) уплотнение вещества газопылевого облака (возможными причинами чего могли стать как естественная динамика облака, так и прохождение сквозь вещество облака ударной волны от взрыва сверхновой, и др.), которое стало центром гравитационного притяжения для окружающего вещества — центром гравитационного коллапса. Облако уже содержало не только первичные водород и гелий, но и многочисленные тяжёлые элементы (Металличность), оставшиеся после звёзд предыдущих поколений. Кроме того, коллапсирующее облако обладало некоторым начальным угловым моментом.
В процессе гравитационного сжатия размеры газопылевого облака уменьшались и, в силу закона сохранения углового момента, росла скорость вращения облака. Из-за вращения скорости сжатия облака параллельно и перпендикулярно оси вращения различались, что привело к уплощению облака и формированию характерного диска.
Как следствие сжатия росла плотность и интенсивность столкновений друг с другом частиц вещества, в результате чего температура вещества непрерывно возрастала по мере сжатия. Наиболее сильно нагревались центральные области диска.
При достижении температуры в несколько тысяч кельвинов, центральная область диска начала светиться — сформировалась протозвезда. Вещество облака продолжало падать на протозвезду, увеличивая давление и температуру в центре. Внешние же области диска оставались относительно холодными. За счёт гидродинамических неустойчивостей, в них стали развиваться отдельные уплотнения, ставшие локальными гравитационными центрами формирования планет из вещества протопланетного диска.
Когда температура в центре протозвезды достигла миллионов кельвинов, в центральной области началась термоядерная реакция горения водорода. Протозвезда превратилась в обычную звезду главной последовательности. Во внешней области диска крупные сгущения образовали планеты, вращающиеся вокруг центрального светила примерно в одной плоскости и в одном направлении.
Последующая эволюция
Раньше считалось, что все планеты сформировались приблизительно на тех орбитах, где находятся сейчас, однако в конце XX — начале XXI века эта точка зрения радикально изменилась. Сейчас считается, что на заре своего существования Солнечная система выглядела совсем не так, как она выглядит сейчас. По современным представлениям, внешняя Солнечная система была гораздо компактнее по размеру, чем сейчас, пояс Койпера был гораздо ближе к Солнцу, а во внутренней Солнечной системе помимо доживших до настоящего времени небесных тел существовали и другие объекты, по размеру не меньшие чем Меркурий.
Планеты земного типа
Гигантское столкновение двух небесных тел, возможно, породившее спутник Земли Луну
В конце эпохи формирования планет внутренняя Солнечная система была населена 50—100 протопланетами с размерами, варьирующимися от лунного до марсианского. Дальнейший рост размеров небесных тел был обусловлен столкновениями и слияниями этих протопланет между собой. Так, например, в результате одного из столкновений Меркурий лишился большей части своей мантии, в то время как в результате другого был рождён спутник Земли Луна. Эта фаза столкновений продолжалась около 100 миллионов лет до тех пор, пока на орбитах не осталось 4 массивных небесных тела известных сейчас.
Одной из нерешённых проблем данной модели является тот факт, что она не может объяснить, как начальные орбиты протопланетных объектов, которые должны были обладать высоким эксцентриситетом, чтобы сталкиваться между собой, смогли в результате породить стабильные и близкие к круговым орбиты оставшихся четырёх планет. По одной из гипотез, эти планеты были сформированы в то время, когда межпланетное пространство ещё содержало значительное количество газо-пылевого материала, который за счёт трения снизил энергию планет и сделал их орбиты более гладкими. Однако этот же самый газ должен был предотвратить возникновение большой вытянутости в первоначальных орбитах протопланет. Другая гипотеза предполагает, что коррекция орбит внутренних планет произошла не за счёт взаимодействия с газом, а за счёт взаимодействия с оставшимися более мелкими телами системы. По мере прохождения крупных тел сквозь облако мелких объектов последние из-за гравитационного влияния стягивались в регионы с более высокой плотностью, и создавали таким образом «гравитационные гребни» на пути прохождения крупных планет. Увеличивающееся гравитационное влияние этих «гребней», согласно этой гипотезе, заставляло планеты замедляться и выходить на более округлую орбиту].
Пояс астероидов
Внешняя граница внутренней Солнечной системы располагается между 2 и 4 а. е. от Солнца и представляет собой пояс астероидов. Изначально астероидный пояс содержал достаточное количество материи, чтобы сформировать 2—3 планеты размером с Землю. Эта область содержала большое количество планетозималей, которые слипались между собой, образуя всё более крупные объекты. В результате этих слияний в поясе астероидов сформировалось около 20—30 протопланет с размерами от лунного до марсианского. Однако начиная с того времени, когда в относительной близости от пояса сформировалась планета Юпитер, эволюция этой области пошла по другому пути. Мощные орбитальные резонансы с Юпитером и Сатурном, а также гравитационные взаимодействия с более массивными протопланетами этой области разрушали уже сформированные планетозимали. Попадая в область действия резонанса при прохождении поблизости планеты-гиганта планетозимали получали дополнительное ускорение, врезались в соседние небесные тела и дробились вместо того чтобы плавно сливаться.
По мере миграции Юпитера к центру системы возникающие возмущения имели всё более выраженный характер. В результате этих резонансов планетозимали меняли эксцентриситет и наклонение своих орбит и даже выбрасывались за пределы астероидного пояса. Некоторые из массивных протопланет также были выброшены Юпитером за пределы пояса астероидов, в то время как другие протопланеты, вероятно, мигрировали во внутреннюю Солнечную систему, где сыграли финальную роль в увеличении массы нескольких оставшихся планет земного типа. В течение этого периода истощения влияние планет-гигантов и массивных протопланет заставило астероидный пояс «похудеть» до всего лишь 1 % от Земной массы, которую составляли в основном маленькие планетозимали. Однако эта величина в 10—20 раз больше современного значения массы астероидного пояса, которая теперь составляет 1/2000 массы Земли. Считается, что второй период истощения, который и привёл массу астероидного пояса к текущим значениям, наступил, когда Юпитер и Сатурн вошли в орбитальный резонанс 2:1.
Вполне вероятно, что период гигантских столкновений в истории внутренней Солнечной системы сыграл важную роль в получении Землёй её запасов воды (~6⋅1021 кг). Дело в том, что вода — слишком летучее вещество, чтобы возникнуть естественным образом во время формирования Земли. Скорее всего, она была занесена на Землю из внешних, более холодных областей Солнечной системы. Возможно именно протопланеты и планетозимали, выброшенные Юпитером за пределы астероидного пояса, занесли воду на Землю. Другими кандидатами на роль главных доставщиков воды являются также кометы главного пояса астероидов, обнаруженные в 2006 году, в то время как кометы из пояса Койпера и из других отдалённых областей предположительно занесли на Землю не более 6 % воды.
Планетная миграция
См. также: Модель Ниццы
В соответствии с небулярной гипотезой, две внешние планеты Солнечной системы находятся в «неправильном» месте. Уран и Нептун, «ледяные гиганты» Солнечной системы, располагаются в области, где пониженная плотность вещества туманности и длительные орбитальные периоды делали формирование таких планет весьма маловероятным событием. Считается, что эти две планеты изначально сформировались на орбитах вблизи Юпитера и Сатурна, где имелось гораздо больше строительного материала, и только спустя сотни миллионов лет мигрировали на свои современные позиции.
Симуляция, показывающая расположение внешних планет и пояса Койпера: a) Перед орбитальным резонансом 2:1 Юпитера и Сатурна b) Разбрасывание объектов древнего пояса Койпера по Солнечной системе после сдвига орбиты Нептуна c) После выбрасывания Юпитером объектов пояса Койпера за пределы системы
Планетная миграция в состоянии объяснить существование и свойства внешних регионов Солнечной системы. За Нептуном Солнечная система содержит пояс Койпера, рассеянный диск и облако Оорта, представляющие собой рассеянные скопления маленьких ледяных тел и дающие начало большинству наблюдаемых в Солнечной системе комет. Сейчас пояс Койпера располагается на расстоянии 30—55 а. е. от Солнца, рассеянный диск начинается в 100 а. е. от Солнца, а облако Оорта — в 50000 а. е. от центрального светила. Однако в прошлом пояс Койпера был гораздо плотнее и ближе к Солнцу. Его внешний край находился примерно в 30 а. е. от Солнца, в то время как его внутренний край располагался непосредственно за орбитами Урана и Нептуна, которые в свою очередь были также ближе к Солнцу (приблизительно 15—20 а. е.) и, кроме того, располагались в противоположном порядке: Уран был дальше от Солнца, чем Нептун.
После формирования Солнечной системы орбиты всех планет-гигантов продолжали медленно изменяться под влиянием взаимодействий с большим количеством оставшихся планетозималей. Спустя 500—600 миллионов лет (4 миллиарда лет назад) Юпитер и Сатурн вошли в орбитальный резонанс 2:1; Сатурн совершал один оборот вокруг Солнца в точности за то время, за которое Юпитер совершал 2 оборота. Этот резонанс создал гравитационное давление на внешние планеты, вследствие чего Нептун вырвался за пределы орбиты Урана и врезался в древний пояс Койпера. По этой же причине планеты стали отбрасывать окружающие их ледяные планетозимали вовнутрь Солнечной системы, в то время как сами стали отдаляться вовне. Этот процесс продолжался аналогичным образом: под действием резонанса планетозимали выбрасывались вовнутрь системы каждой последующей планетой, которую они встречали на своём пути, а орбиты самих планет отдалялись все дальше. Этот процесс продолжался до тех пор, пока планетозимали не вошли в зону непосредственного влияния Юпитера, после чего огромная гравитация этой планеты отправила их на высокоэллиптические орбиты или даже выбросила их за пределы Солнечной системы. Эта работа в свою очередь слегка сдвинула орбиту Юпитера внутрь. Объекты, выброшенные Юпитером на высокоэллиптические орбиты, сформировали облако Оорта, а тела, выброшенные мигрирующим Нептуном, сформировали современный пояс Койпера и рассеянный диск. Данный сценарий объясняет, почему рассеянный диск и пояс Койпера имеют малую массу. Некоторые из катапультированных объектов, включая Плутон, со временем вошли в гравитационный резонанс с орбитой Нептуна. Постепенно трение с рассеянным диском сделало орбиты Нептуна и Урана вновь гладкими.
Считается, что в отличие от внешних планет внутренние тела системы не претерпевали значительных миграций, поскольку после периода гигантских столкновений их орбиты оставались стабильными.
Поздняя тяжёлая бомбардировка
Основная статья: Поздняя тяжёлая бомбардировка
Гравитационное разрушение древнего астероидного пояса, вероятно, положило начало периоду тяжёлой бомбардировки, происходившему около 4 миллиардов лет назад, через 500—600 миллионов лет после формирования Солнечной системы. Этот период длился несколько сотен миллионов лет и его последствия видны до сих пор на поверхности геологически неактивных тел Солнечной системы, таких как Луна или Меркурий, в виде многочисленных кратеров ударного происхождения. А самое древнее свидетельство жизни на Земле датируется 3,8 миллиардами лет назад — почти сразу после окончания периода поздней тяжёлой бомбардировки.
Гигантские столкновения являются нормальной (хоть и редкой в последнее время) частью эволюции Солнечной системы. Доказательствами этого служат столкновение кометы Шумейкера—Леви с Юпитером в 1994, падение на Юпитер небесного тела в 2009 и метеоритный кратер в Аризоне. Это говорит о том, что процесс аккреции в Солнечной системе ещё не закончен, и, следовательно, представляет опасность для жизни на Земле.
Формирование спутников
Естественные спутники образовались у большинства планет Солнечной системы, а также у многих других тел. Различают три основных механизма их формирования:
формирование из околопланетного диска (в случае газовых гигантов)
формирование из осколков столкновения (в случае достаточно крупного столкновения под малым углом)
захват пролетающего объекта
Юпитер и Сатурн имеют много спутников, таких как Ио, Европа, Ганимед и Титан, которые, вероятно, сформировались из дисков вокруг этих планет-гигантов по тому же принципу, как и сами эти планеты сформировались из диска вокруг молодого Солнца. На это указывают их большие размеры и близость к планете. Эти свойства невозможны для спутников, приобретённых путём захвата, а газообразная структура планет делает невозможной и гипотезу формирования лун путём столкновения планеты с другим телом».

В вопросах образования планет и галактик у ортодоксов теорий нет, есть только гипотезы. Гипотезы довольно убоги. Зачем бы планеты стали образовываться, если уже есть звёзды? Почему бы газу и пыли не притянуться к звёздам? Как мы видим, чем ближе к нашим дням уверенность ортодоксов в знаниях падает по гиперболе, как инфляция у Линде. Вообще, объяснение образования всего сущего только под действием гравитации не выдерживает никакой критики. Примите во внимание господа читатели, что Специальная теория относительности и Общая теория относительности отменила инерцию, ведь масса стала расчётной физической величиной, не имеющей никакого отношения к инерции. В этих теориях такого и понятия нет. Таким образом, в макрофизике рухнул последний бастион, который мог бы ещё противостоять гравитации. Поэтому все звёзды, планеты, астероиды, кометы и прочее должны были сваляться в один огромный кусок. Вот вкратце, должно бы было всё это мироздание чем закончиться. Всё вышло из сингулярности и в сингулярность свернулось. Причём свернулось меньше, чем было, так как фотоны улетели, а адроны и анти адроны, а так же лептоны и анти лептоны взаимно уничтожились.

Вообще статья плохая – нет ничего ни про тёмную материю, ни про тёмную энергию, поэтому мы посмотрим, что пишут ортодоксы про эти материи. Нет у ортодоксов также никаких соображений как, почему и зачем образовались галактики, что такое рукава галактик и прочее. Поэтому мы сначала разберёмся с тёмной материй. Вот что пишет об истории её открытия Википедия.

«В истории науки встречались ситуации, когда движение небесных тел отклонялось от законов небесной механики; как правило, это явление находило объяснение в существовании неизвестного материального тела (или нескольких тел). Именно так были открыты планета Нептун и звезда Сириус B. В 1922 году астрономы Джеймс Джинс и Якобус Каптейн исследовали движение звёзд в нашей Галактике и пришли к выводу, что бо́льшая часть вещества в галактике невидима; в этих работах, вероятно, впервые появился термин «тёмная материя» (англ. dark matter). Ян Оорт использовал тот же термин в статье 1932 года.
Широкое распространение термин получил после работ Фрица Цвикки, который употребил его в 1933 году в своей работе. Цвикки измерил радиальные скорости восьми галактик в скоплении Кома (созвездие Волосы Вероники) и обнаружил, что для устойчивости скопления приходится предположить, что его полная масса в десятки раз больше, чем масса входящих в него звёзд. Вскоре другие астрономы пришли к таким же выводам для многих других галактик. Особенный интерес вызвала туманность Андромеды (Хорес Бэбкок, 1939) — скорость вращения звёзд вокруг её центра не уменьшалась, как предсказывала небесная механика, обратно пропорционально, а оставалась почти постоянной. Это могло означать, что галактика на всём своём протяжении содержит значительную массу невидимого вещества («галактическое гало»).
Начиная с 1960-х годов, когда начался бурный прогресс наблюдательных средств астрономии, число аргументов в пользу существования тёмной материи быстро росло. При этом оценки её параметров, полученные из разных источников и разными методами, в целом согласуются между собой.
Описанное выше неубывание скорости вращения звёзд оказалось не аномалией, а типичной ситуацией в мире галактик.
При исследовании движения спутников галактик и близко расположенных шаровых скоплений было подтверждено, что общая масса каждой галактики в несколько раз превышает суммарную массу её звёзд.
Было проведено изучение движения в системах двойных галактик и в галактических скоплениях. Оказалось, что в этих масштабах доля тёмной материи намного выше, чем внутри галактик.
Звёздная масса эллиптических галактик, согласно расчётам, недостаточна для удержания входящего в галактику горячего газа, если не учесть тёмную материю.
Оценка массы скоплений галактик, осуществляющих гравитационное линзирование, даёт результаты, включающие вклад тёмной материи и близкие к полученным другими методами.
Большой вклад внесли в конце 1960-х и начале 1970-х годов астрономы Вера Рубин из Института Карнеги и Кент Форд (англ.) русск. — они были первыми, кто провёл точные и надёжные вычисления, указывающие на наличие тёмной материи. Они работали с новым, более чувствительным спектрографом, который мог гораздо точнее измерять скорость вращения диска спиральных галактик даже при виде «с ребра». Рубин и Форд заявили на конференции Американского астрономического общества в 1975 году об открытии: большинство звёзд в спиральных галактиках двигаются по орбитам примерно с одинаковой угловой скоростью, что приводит к мысли, что плотность массы в галактиках одинакова и для тех регионов, где находится большинство звёзд (балдж), и для тех регионов (на краю диска), где звёзд мало. Похожий вывод был сделан независимо в 1978 году. В 1980 году работа Рубин была окончательно признана астрономическим сообществом.
Интересно, что сама Вера Рубин предпочитала модифицированную ньютоновскую динамику (MOND) как причину найденного ей эффекта, замечая: «Если бы я выбирала, то я бы хотела открыть, что это именно ньютоновские законы должны быть изменены для правильного описания гравитационных взаимодействий на больших расстояниях. Это более привлекательно, чем Вселенная, наполненная новым типом субъядерных частиц».

Вот, господа читатели, как обстоит дело с этой знаменитой тёмной материей – это называется неправильная интерпретация наблюдений. Ортодоксы заметили, что галактический диск вращается вокруг центрального тела как единое целое. Вот они выдумали себе из головы (догадались по Фейнману), что не хватает массы в галактике. Это потому, что они не знают, как именно образовалась галактика, так же не знают истинного строения звёзд. И не знают, что, если звёзды взаимодействуют гравитационно, то они лишь незначительно колеблются возле своего положения равновесия между притяжением и отталкиванием, то есть, они как бы связаны в единую сеть. И, самое главное, ортодоксы не знают что такое гравитация. Таким образом, наши открыватели темной материи подобны Толмену и Стюарту, которые покрутили катушку с приделанным к ней гальванометром, потом резко остановили её и заявили, что в проводниках сидят свободные электроны. Аналогия очень точная, им надо было хотя бы из приличия продумать какие, то другие варианты. Ведь они ничего не взвешивали, а дефицит массы определяли спектрографом. Подобно как гравитационные волны пространства-времени определили не на весах, а интерферометром. Однако, тем не менее, мы должны поблагодарить ортодоксов, за открытие тёмной материи, особенно эту Веру Рубин, она правильно сомневалась, что субъядерные (даже субэлементарно-частичные) корпускулы в свободном состоянии наполняют галактику. Вера Рубин молодец. Недаром у неё такие имя и фамилия – Вера и Рубин. Тёмная материя есть, но она надёжно спрятана в веществе и в ядрах звёзд, планет и спутников. Иначе нельзя, эта тёмная материя опасна для жизни. В свободном состоянии тёмная материя находится только в первичном космосе за пределами всех вселенных, поэтому там никто не живёт. Правильно Вера говорит также и о том, что ньютоновские законы должны быть изменены. Вернее, не законы, а только один закон. Мы имеем в виду его Закон тяготения. Собственно, его закон мы уже немного изменили (см. первый выпуск настоящей серии «Гравитация новая парадигма»). Однако наши изменения взаимодействия звёзд не касаются, а относятся только к взаимодействиям звёзд, планет и спутников с объектами, состоящими полностью из вещества. Для описания взаимодействия звёзд между собой, а также для описания взаимодействия звёзд, планет и спутников Закон тяготения Ньютона не годится совсем.

С тёмной энергией, в отличие от тёмной материи, всё проще, мы даже не будем в Википедию смотреть, а то опять развезут простой вопрос на десять страниц. Во-первых «тёмная энергия» у ортодоксов – это никакая не энергия, а тоже тёмная материя, но только другая и находится не в галактиках, а между галактиками. И эта тёмная энергия не притягивает ничего, а расталкивает галактики. Почему они назвали материю энергией? Это они бравируют тем, что для них всякая материя равна энергии. Просто выпендриваются и для того, чтобы в конец запутать обывателя. И ещё потому, чтобы отличать эти материи друг от друга. Разумеется, они напрасно назвали материю энергией. Назвали бы «отталкивающая материя» и не было бы никакой путаницы. Но с этим мы ничего поделать не можем, как назвали, так и назвали. Тем боле, что тёмной энергии, в природе не существует, она появилась из голов ортодоксов (или они догадались – по Фейнману) потому, что ортодоксы не знают, почему разбегаются галактики. Это мы разберём, когда будем рассматривать феноменологию становления и развития вселенных по информации высокоразвитой цивилизации.

Почему, как и зачем образовались галактики ортодоксам неизвестно. Попробовали поискать отдельно этот вопрос, но отдельная статья Википедеии слово в слово повторяет раздел из статьи о мироздании, мы это уже приводили. Там сказано, что ничего не понятно существует парочка конкурирующих гипотез, вот и всё.

Однако есть у ортодоксов статья о строении галактик, и мы её приведём, конечно. Вот статья о галактическом центре.

«Галактический центр
Материал из Википедии — свободной энциклопедии.
Изображение, размером 400 на 900 световых лет, составленное из нескольких фотографий телескопа «Чандра», с сотнями белых карликов, нейтронных звёзд и чёрных дыр, в облаках газа, с энергий частиц, соответствующих температуре до миллионов градусов. Внутри яркого пятна в центре изображения предположительно находится сверхмассивная чёрная дыра галактического центра (радиоисточник Стрелец A*). Цвета на снимке соответствуют рентгеновским энергетическим диапазонам: красный (низкая), зелёный (средняя) и синий (высокая).
Галакти́ческий центр — сравнительно небольшая область в центре нашей Галактики, радиус которой составляет около 1000 парсек и свойства которой резко отличаются от свойств других её частей. Образно говоря, галактический центр — это космическая «лаборатория», в которой и сейчас происходят процессы звёздообразования и в которой расположено ядро, когда-то давшее начало конденсации нашей звёздной системы.
Расположение
Галактический центр находится на расстоянии 8,5 килопарсек от нашей Солнечной системы, в направлении созвездия Стрельца. В галактической плоскости сосредоточено большое количество межзвёздной пыли, из-за которой свет, идущий от галактического центра, ослабляется на 30 звёздных величин, то есть в 1012 раз. Поэтому центр невидим в оптическом диапазоне — невооружённым глазом и при помощи оптических телескопов. Галактический центр наблюдается в радиодиапазоне, а также в диапазонах инфракрасных, рентгеновских и гамма-лучей. Первое изображение ядра Галактики было получено в конце 1940-х годов А. А. Калиняком, В. И. Красовским и В. Б. Никоновым в инфракрасном диапазоне спектра.
Экваториальные координаты Галактического центра (эпоха J2000.0):
Прямое восхождение : 17ч 45м 40.04с
Склонение: -29° 00′ 28.1″
Состав галактического центра
Самой крупной особенностью галактического центра является находящееся там звёздное скопление (звёздный балдж) в форме эллипсоида вращения, большая полуось которого лежит в плоскости Галактики, а малая — на её оси.
Балдж (от англ. bulge — «вздутие») — внутренний, яркий сфероидальный компонент спиральных галактик. Размер его колеблется от сотен парсек до нескольких килопарсек. Балдж галактики состоит в основном из старых звёзд, движущихся по вытянутым орбитам.
Отношение полуосей равно примерно 0,4. Орбитальная скорость звёзд на расстоянии около килопарсека составляет примерно 270 км/с, а период обращения — около 24 млн. лет. Исходя из этого, получается, что масса центрального скопления составляет примерно 10 млрд. масс Солнца. Концентрация звёзд скопления резко увеличивается к центру. Звёздная плотность изменяется примерно пропорционально R−1,8 (R — расстояние от центра). На расстоянии около килопарсека она составляет несколько солнечных масс в кубическом парсеке, в центре — более 300 тыс. солнечных масс в кубическом парсеке (для сравнения, в окрестностях Солнца звёздная плотность составляет около 0,07 солнечных масс на кубический парсек).
От скопления отходят спиральные газовые рукава, простирающиеся на расстояние до 3 — 4,5 тысяч парсек. Рукава вращаются вокруг галактического центра и одновременно удаляются в стороны, с радиальной скоростью около 50 км/с. Кинетическая энергия движения составляет 1055 эрг.
Внутри скопления обнаружен газовый диск радиусом около 700 парсек и массой около ста миллионов масс Солнца. Внутри диска находится центральная область звёздообразования.
Галактический центр Млечного Пути в инфракрасном диапазоне.
Ближе к центру находится вращающееся и расширяющееся кольцо из молекулярного водорода, масса которого составляет около ста тысяч масс Солнца, а радиус — около 150 парсек. Скорость вращения кольца составляет 50 км/с, а скорость расширения — 140 км/с. Плоскость вращения наклонена к плоскости Галактики на 10 градусов.
По всей вероятности, радиальные движения в галактическом центре объясняются взрывом, произошедшим там, около 12 млрд. лет назад.
Распределение газа в кольце — неравномерное, образующее огромные газопылевые облака. Крупнейшим облаком является комплекс Стрелец B2, находящийся на расстоянии 120 парсек от центра. Диаметр комплекса составляет 30 парсек, а масса — около 3 млн. масс Солнца. Комплекс является крупнейшей областью звёздообразования в Галактике. В этих облаках обнаружены все виды молекулярных соединений, встречающихся в космосе.
Ещё ближе к центру находится центральное пылевое облако, радиусом около 15 парсек. В этом облаке периодически наблюдаются вспышки излучения, природа которых неизвестна, но которые свидетельствуют о происходящих там активных процессах.
Практически в самом центре находится компактный источник нетеплового излучения Стрелец A*, радиус которого составляет 0,0001 парсек (около 20,6 а. е.), а яркостная температура — около 10 млн. градусов. Радиоизлучение этого источника, по-видимому, имеет синхротронную природу. Временами наблюдаются быстрые изменения потока излучения. Нигде в другом месте Галактики подобных источников излучения не обнаружено, зато подобные источники имеются в ядрах других галактик.
С точки зрения моделей эволюции галактик, их ядра являются центрами их конденсации и начального звёздообразования. Там должны находиться самые старые звёзды. По всей видимости, в самом центре ядра Галактики находится сверхмассивная чёрная дыра массой (4,31 ± 0,36)⋅106 масс Солнца, что показано исследованием орбит близлежащих звёзд. Излучение источника Стрелец А* вызвано аккрецией газа на чёрную дыру, радиус излучающей области (аккреционный диск, джеты) не более 45 а. е.
В 2016 году японские астрофизики сообщили об обнаружении в Галактическом центре второй гигантской чёрной дыры. Эта чёрная дыра находится в 200 световых годах от центра Млечного Пути. Наблюдаемый астрономический объект с облаком занимает область пространства диаметром 0,3 светового года, а его масса составляет 100 тысяч масс Солнца. Пока точно не установлена природа этого объекта — это чёрная дыра или иной объект.
В 2018 году на основе данных наблюдений рентгеновской космической лаборатории Chandra в Галактическом центре было обнаружено 12 маломассивных рентгеновских двойных систем, одним из компонентов которых с высокой вероятностью могут быть чёрные дыры звёздной массы. Возможно, на расстоянии 1 парсека от сверхмассивной чёрной дыры, которая связана с компактным радиоисточником Стрелец А*, может находиться 10—20 тыс. чёрных дыр.
В галактическом центре имеется три возможных кандидата в чёрные дыры средней массы: HCN–0.009–0.044, IRS13E и CO–0.40–0.22».

Это мы особенно комментировать сейчас не будем, просто скажем, что в галактиках сейчас (и никогда) не было, и нет никакого звёздообразования, и нет там никаких чёрных дыр, даже одной, не говоря уж о 10 – 20 тысячах чёрных дыр. Ортодоксы понятия не имеют как, почему, зачем и из чего образовались галактики, поэтому фантазируют напропалую. Мы разберём это, когда будем рассматривать феноменологию образования галактик согласно информации высокоразвитой цивилизации.

Итак, господа читатели, мы рассмотрели общепринятую теорию мироздания землян и установили, что наше понимание этих вопросов сильно отличаются. Да это и понятно, так как землянам в силу несовершенства своих органов чувств и невключённости своего интеллекта на полную мощность, приходится теоретизировать. Однако, теоретический путь познания природы, хоть и является объективным для землян в целом, но не лишён внутренних противоречий, так как первый шаг разработки теории – выдумывание её из головы. Как говорил Фейнман, — «Сначала надо догадаться», — и по-другому никак нельзя воздвигнуть теории. Поэтому вся теоретическая наука отдана на откуп, так называемым, гениям, которые и делают этот первый шаг разработки теории. Таким образом, объективный метод теоретизирования оборачивается чистым субъективизмом физических гениев. Такая вот диалектика.

Наш анализ земной «общепризнанной» теории мироздания, конечно, не претендует на полноту, и скорее напоминает беззлобное ворчание благодушно настроенного оппонента, чем на серьёзный и исчерпывающий разбор этой теории. Серьёзное рассмотрение этой теории потребовало бы нескольких томов. Однако мы не ставили себе целью анализ этой теории, а привели теорию скорее для сравнения с реальностью, которая будет описана в феноменологии становления и развития вселенной высокоразвитой цивилизации. Однако, многократное «производство» с последующей аннигиляцией разных экзотических частиц вызывает невольную улыбку. Глупая какая-то природа у ортодоксов. Зачем же она создаёт и тут же разрушает частицы? Ну, конечно же, только затем, чтобы подтвердить Стандартную модель атома, которую нафантазировали квантовые механикисты. В действительности образование элементарных частиц атома сразу начинается с ядер атомов (отдельная элементарная частица) и привычных всем электронов, протонов и нейтронов.

Вторая фундаментальная ошибка наших гениальных теоретиков в том, что они попытались сконструировать вселенную только на одной гравитации. Однако без отталкивания вселенные никогда бы не достигли такой изумительной стабильности, как мы наблюдаем в настоящее время. В строительстве вселенной принимают участие две силы притяжение и отталкивание, или гравитация и антигравитация. Только наличие этих двух противоположностей позволяет создать стабильные вселенные. Отталкивание ортодоксам всё равно пришлось вводить, но только между галактиками. Когда оно (отталкивание) появилось и из чего произошла тёмная энергия - остаётся тайной.

К теориям нельзя подобрать, или придумать никакого объективного критерия истинности теорий. На эту роль не годится ни математика, так как оная может быть только критерием внутренней непротиворечивости теории, ни опыт, служащий для поверки теории, так как прямые опыты возможны в крайне редких случаях. Косвенные же опыты не значат ничего, так как для объяснения результатов косвенных опытов надо, в свою очередь, разработать теорию, со всеми вытекающими нежелательными для теорий последствиями. Не зря Пушкин называл опыт сыном ошибок трудных. Критерий истинности науки – «практика», который ввёл Фридрих Энгельс, не относится к теориям, а является критерием истинности только феноменологических знаний. Теории не используются в техническом и технологическом прогрессе ввиду их несостоятельности. Это хорошо объяснено в нашей книжке «Методология научных исследований» [1].

Таким образом, раз объективные критерии истинности теорий отсутствуют, то применяются субъективные критерии от безобидной «красоты» и «простоты» до искусственной раскрутки брендов «гениальных» теорий политиками и бизнесом. Однако последние заинтересованы не в истинности научных знаний, а в стабильности научных представлений, так как считают, что это будет способствовать стабильности барышей от бизнеса и незыблемость их политической власти. Так или иначе, политики и бизнес берут науку под контроль, и только они решают – какие, разработки в науке финансировать и поощрять, а какие спускать на тормозах с перекрытием финансовых потоков.

Мы не говорим, что стабильность это плохо. Но всё хорошо в меру. В настоящее время развелось значительное количество «общепризнанных» теорий и стандартных моделей, которые ни в коем случае нельзя подвергнуть сомнению и которые являются «кандалами» для самих же ортодоксальных учёных. Это и привело к настоящему кризису теоретической науки.

Да и о какой же стабильности можно говорить в этом мире? Где она – эта пресловутая стабильность? Сейчас мир стабильно нестабилен. Вторая мировая война ещё и не кончалась. В мире повсеместно вспыхивают локальные военные конфликты и местные войны, которые захватывают всё большую территорию Земного шара. Эти военные конфликты, хоть и имеют какую-то идеологическую окраску, на самом деле, являются борьбой за ресурсы, что связано с тем, что принципиально новых технологий не появляется, поэтому в ходу до сих пор феноменология, наработанная Великими эмпириками XIX века.

(Продолжение следует)

Друзья, подписывайтесь на мой канал, только здесь вы узнаете не теоретическую, а настоящую физику.

Статьи и ссылки

1. Новая парадигма гравитации

1.2. Краткий анализ существующих теорий гравитации.

1.3. Затруднения закона всемирного тяготения.

Ссылка: https://zen.yandex.ru/media/fizikavysokorazvitoiicivilizacii/novaia-paradigma-gravitacii-12-kratkii-analiz-suscestvuiuscih-teorii-gravitacii-13-zatrudneniia-zakona-vsemirnogo-tiagoteniia-5ee728280b8d354e0dafc266

1.4. Краткие сведения о строении вещества.

1.5. Краткие сведения о строении звёзд, планет и спутников.

Ссылка: https://zen.yandex.ru/media/fizikavysokorazvitoiicivilizacii/novaia-paradigma-gravitacii-prodoljenie-14-stroenie-vescestva-15-stroenie-zvezd-planet-i-sputnikov-5ee8707702f56d5bd13801f5

1.6. Новая парадигма гравитации

Ссылка: https://zen.yandex.ru/media/fizikavysokorazvitoiicivilizacii/novaia-paradigma-gravitacii-prodoljenie-16-novaia-paradigma-gravitacii-5ee907204a887c1a0423f48f

1.7. Преодоление всех затруднений Закона всемирного тяготения новой парадигмой гравитации.

Ссылка: https://zen.yandex.ru/media/fizikavysokorazvitoiicivilizacii/novaia-paradigma-gravitacii-prodoljenie-17-preodolenie-vseh-zatrudnenii-zakona-tiagoteniia-novoi-paradigmoi-gravitacii-5eeafabaf5043b5a77375a6d

1.8. Опыт, доказывающий новую парадигму гравитации.

Ссылка: https://zen.yandex.ru/media/fizikavysokorazvitoiicivilizacii/novaia-paradigma-gravitacii-prodoljenie-18-opyt-dokazyvaiuscii-novuiu-paradigmu-gravitacii-5eeb57c801649e4d5bb116d8

1.9. Приливы и отливы.

Ссылка: https://zen.yandex.ru/media/fizikavysokorazvitoiicivilizacii/novaia-paradigma-gravitacii-prodoljenie-19-prilivy-i-otlivy-5eeba798e5335f770d03ebff

2.Масса – нежелательная эволюция понятия «масса» в угоду теориям:

2.1. Трансформация понятие масса в угоду теориям

Ссылка: https://zen.yandex.ru/media/fizikavysokorazvitoiicivilizacii/massa-nejelatelnaia-evoliuciia-poniatiia-21-transformaciia-poniatiia-massa-v-ugodu-teoriiam-5eecf791a79995453cd6673f

2.2. Истинное феноменологическое понятие масса

Ссылка: https://zen.yandex.ru/media/fizikavysokorazvitoiicivilizacii/massa-nejelateolnaia-evoliuciia-poniatiia-prodoljenie-22-istinnoe-fenomenologicheskoe-poniatie-massa-5eee282dd17b0f4662265b29

3. Методология научных исследований

3.1. Объективность теоретизирования в земной науке.

3.2. Цель науки и подмена цели.

3.3. Методологическая революция в физике XX века

Ссылка: https://zen.yandex.ru/media/fizikavysokorazvitoiicivilizacii/metodologiia-nauchnyh-issledovanii-31-teoretizirovanie-v-zemnoi-nauke-32-cel-nauki-33-metodologicheskaia-revoliuciia-5eef30f16c491e6d98fb4d24

3.4. Этапы разработки теорий

3.5. Отсутствие критерия истинности теорий и закон их несостоятельности

3.6. Теории не влияют на технический прогресс

Ссылка: https://zen.yandex.ru/media/fizikavysokorazvitoiicivilizacii/metodologiia-nauchnyh-issledovanii-34-etapy-razrabotki-teorii-35-otsutstvie-kriteriia-istinnosti-teorii--5ef068447b585908713e2b97

4. Космология

4.1 Общепризнанная космологическая теория землян

Ссылка: https://zen.yandex.ru/media/fizikavysokorazvitoiicivilizacii/kosmologiia-41-obscepriznannaia-kosmologicheskaia-teoriia-zemlian-5ef1fb726a6542320850f196

4.2. Феноменология вселенных высокоразвитой цивилизации

Ссылка: https://zen.yandex.ru/media/fizikavysokorazvitoiicivilizacii/kosmologiia-prodoljenie-42-fenomenologiia-vselennyh-vysokorazvitoi-civilizacii-5ef5c0b0d406325593c67da5

5. Время

5.1. Время – не физическое понятие Ссылка: https://zen.yandex.ru/media/fizikavysokorazvitoiicivilizacii/5-vremia-51-vremia-ne-fizicheskoe-poniatie-5ef9ed61dae6c96f440bea20#comment_435794433

5.2. Неправильная интерпретация парадокса близнецов Ссылка: https://zen.yandex.ru/media/fizikavysokorazvitoiicivilizacii/5-vremia-52-nepravilnaia-interpretaciia-paradoksa-bliznecov-5f0f16d7836f1b2c69a26846

6.1. Пространство

Ссылка: https://zen.yandex.ru/media/fizikavysokorazvitoiicivilizacii/61-prostranstvo-5efcdd583dd1ae44acd480d0

7.1. Энергия

Ссылка: https://zen.yandex.ru/media/fizikavysokorazvitoiicivilizacii/71-energiia-5f0605787161a16a81118b5c

8.Атом

8.1. Физическое открытие: «Ядро атома – отдельная элементарная частица» Ссылка: https://zen.yandex.ru/media/fizikavysokorazvitoiicivilizacii/8-atom-81-fizicheskoe-otkrytie-iadro-atoma-otdelnaia-elementarnaia-chastica-5f0c05d1d724de1a43967d69

Друзья, читайте все статьи без пропусков, только тогда физика высокоразвитой цивилизации будет понятна.

С подпиской рекламы не будет

Подключите Дзен Про за 159 ₽ в месяц