ПЯТОЕ ПРАВИЛО АРИФМЕТИКИ
(Доктор ВИК) продолжение.
В предыдущие два учебных года процентов десять-пятнадцать моих студентов систематически обнаруживали другое, не менее «нестандартное» математическое знание: они полагали, что любое число в степени (–1) равно нулю. Причём это была не случайная фантазия, а хорошо усвоенное знание, потому что проявлялось неоднократно (даже после моих возражений) и срабатывало в обе стороны: если обнаруживалось что-либо в степени (–1), то оно тут же занулялось, и наоборот, если что-либо требовалось занулить, то для этого подгонялась степень (–1). Резюме то же самое: их так научили.Вот чему несчастных французских детей никак не могут по-настоящему научить, так это обращаться с дробями. Вообще, дроби (их сложение, умножение, а особенно деление) — это постоянная головная боль моих студентов. Из своего пятилетнего опыта преподавания могу сообщить, что сколько-нибудь уверенно обращаться с дробями могло не больше десятой части моих первокурсников. Надо сказать, что арифметическая операция деления — это пожалуй самая трудная тема современного французского среднего образования. Подумайте сами, как можно объяснить ребёнку, что такое деление: небось станете распределять поровну шесть яблочек среди троих мальчиков? Как бы не так. Чтобы объяснить как учат делению во французской школе я опять вынужден обращаться к экспертам. Пусть не все, но кое-кто из вас ещё помнит правило деления в столбик! Так вот, во французской школе операция деления вводится в виде формального алгоритма деления в столбик, который позволяет из двух чисел (делимого и делителя) путём строго определённых математических манипуляций получать третье число (результат деления). Разумеется, усвоить этот ужас можно только проделав массу упражнений, и состоят эти упражнения вот в чём: несчастным ученикам предъявляются шарады в виде уже выполненного деления в столбик, в котором некоторые цифры опущены, и эти отсутствующие цифры требуется найти. Естественно, после всего этого, что бы тебе ни сказали про (3/6), согласишься на что угодно. Разумеется, кроме описанных выше так сказать «систематических нестандартных знаний» (которым научили в школе), имеется много просто личных, случайных фантазий. Некоторые из них очень смешные, например, один юноша как-то предложил переносить число из знаменателя в числитель с переменой знака, другая студентка, когда косинус угла между двумя векторами у неё получился равным 8, она заключила, что сам угол равен 360 градусов умножить на восемь, ну и так далее. У меня есть целая коллекция подобных казусов, но не о них сейчас речь. В конце-концов, то что молодые люди ещё способны фантазировать — это не так уж плохо. Думать в школе их уже отучили (а тех, кого ещё не отучили, в университете отучат — это уж точно), так пусть пока хоть так проявляют живость ума (пока они, живость и ум, ещё есть). Довольно долго я никак не мог понять, как с подобным уровнем знаний все эти молодые люди сумели сдать свой БАК, задачи в котором как правило составлены на вполне приличном уровне, и решить которые (как мне казалось) можно лишь обладая вполне приличными знаниями. Теперь я знаю ответ на этот вопрос. Дело в том, что практически все задачи, предлагаемые на БАКе, можно решить с помощью хорошего калькулятора — они сейчас очень умные, эти современные калькуляторы — и тебе любое алгебраическое преобразование сделают, и производную функции найдут, и график её нарисуют. При этом пользоваться калькулятором при сдаче БАКа совершенно официально разрешено. А уж что-что, а быстро и в правильном порядке нажимать на кнопочки современные молодые люди учатся очень лихо. Одна беда — нет-нет да и ошибёшься — в спешке не ту кнопочку нажмёшь, и тогда может получиться конфуз. Впрочем, «конфуз» — это с моей старомодной точки зрения, а по их, современному мнению — просто ошибка, ну что поделаешь, бывает. К примеру один мой студент что-то там не так нажал, и у него получился радиус планеты Земля равным 10-ти миллиметрам. А, к несчастью, в школе его не научили (или он просто не запомнил), какого размера наша планета, поэтому полученные им 10 мм его совершенно не смутили. И лишь когда я ему сказал, что его ответ неправильный, он стал искать ошибку. Точнее, он просто стал снова нажимать на кнопочки, но только теперь делал это более тщательно. В результате со второй попытки он получил правильный ответ. Это был старательный студент, но ему было абсолютно до лампочки какой там радиус у Земли: 10 мм или 6400 км — сколько скажут, столько и будет. Только не подумайте, что проблему можно решить, запретив калькуляторы — в этом случае БАК просто никто не сдаст, детишки после школы вынуждены будут вместо учёбы в университетах искать работу, и одновременно без работы останется целая армия университетских профессоров — в общем получится страшный социальный взрыв. Так что калькуляторы трогать не стоит, тем более, что в большинстве случаев ученики правильно нажимают на кнопочки.
Чему равен радиус планеты Земля?
10 мм - 1
6 400 км - 2
6 364 км - 3
Прошу оставить свой голос в комментарии.
С уважением, Ваш Граф Гутар.