Новая статья Водородные аккумуляторы- это возможно
Хранение водорода в бытовых условиях – опасная задача и хитрые решения
При грамотной комплектации системы альтернативного энергообеспечения, водород можно считать идеальным накопителем энергии. Выделить его из воды очень легко и также просто можно опять получить с его помощью электроэнергию. Но вот его хранение доставляет реальные неудобства.
Водород и его свойства в практическом ключе
Говорить о водороде имеет смысл только при встраивании его в систему альтернативного энергоснабжения на основе солнечных панелей или ветрогенераторов. Причиной тому служит цикличность генерации электричества такими источникам. Днём может быть слишком много электроэнергии от солнечных панелей, а ночью она не вырабатывается вообще. С ветром ещё хуже, тут даже нет заранее известной цикличности.
Так вот для хранения избытка электроэнергии, наиболее выгодно использовать водород, в сочетании с железо-никелевыми аккумуляторами. При этом водород нужен не для обычных генераторов, а чтобы питать им топливные элементы. КПД современных топливных элементов, выпускаемых серийно, находится в районе 90%. По сравнению с КПД обычных электрогенераторов на углеводородном сырье, в редких случаях превышающих 30%, топливные элементы находятся вне конкуренции.
При чём тут железо-никелевые аккумуляторы
У таких аккумуляторов есть два чрезвычайно важных свойства, которые делают их идеальным в домашней системе независимого энергообеспечения:
1.Они практически неубиваемы!
Железо-никелевые аккумуляторы не боятся переохлаждения или перегрева, им не страшно короткое замыкание, сильные ток зарядки или полная разрядка не причинят им вреда. В Европе и США есть объекты, где железо-никелевые батареи работают ещё со времён Второй Мировой Войны! В них только меняют электролит с регулярностью один раз в 10 лет, и подливают дистиллированную воду раз в месяц.
2. При зарядке железо-никелевого АКБ, около 30% энергии тратится на электролиз.
Т.е. в процессе зарядки, выделяется водород, который требуется только сохранить и потом использовать для питания топливных элементов. Разумеется, что этого объёма водорода будет недостаточно, потребуется дополнительный электролизёр. Но оставлять этот аспект работы таких аккумуляторов без внимания, может только Чубайсоголовый владелец.
Энергоёмкость водорода – неожиданный подвох
Чтобы не погружаться в сложные физические коэффициенты о теплотворной способности и теплоёмкости, можно привести такое сравнение. Если КПД превращения теплоносителя будет 100%, то для того, чтобы лампочка мощностью 100 Вт горела целые сутки, потребуется:
- Керосина – 197 гр./243 мл;
- Метана – 172 гр./414 мл. в сжиженном виде/ 239 литров в газообразном;
- Водорода – 71 гр./1 литр в сжиженном виде/ 780 литров в газообразном;
Складывается двоякая картина! По весу, водорода надо меньше всего, но из-за того что у него самая маленькая плотность среди всех веществ, при пересчёте на объёмные показатели, водород проигрывает!
К тому же, процесс сжижения водорода чрезвычайно сложный, из-за его уникально низких критических параметров. При температуре -240˚C, давление насыщенного пара всего 13 атм. Даже если заполнять стальные баллоны сжатым водородом, то содержать дома компрессор выдающий «хотя бы» 300 атмосфер, дорого, шумно и неэффективно.
Водород как физическое вещество
Кроме самой низкой плотности, у водорода есть ещё одна любопытная особенность – чрезвычайно маленький размер молекулы Н2 .
ИНФОРМАЦИЯ: вообще, атом водорода(≈9 нм) меньше атома гелия (≈11 нм). Но на Земле водород не может существовать в атомарном состоянии, поэтому всегда образует молекулу Н2, а её радиус уже ≈18нм.
Такой уникально маленький размер, позволяет водороду просачиваться даже сквозь металлы! Если не контролировать этот процесс, то металлические ёмкости теряют свою прочность и покрываются трещинами, это явление называется «водородное охрупчивание металла». При этом сильнее всего от этой напасти страдают высокопрочные стали.
С увеличением давления, скорость диффузии водорода в металл повышается. Поэтому водород может растворяться в некоторых металлах, причём в очень больших количествах.
Безопасное хранение водорода в домашних условиях
Водород не более и не менее опасен, чем другие легковоспламеняющиеся виды топлива. Однако его уникальные характеристики следует рассматривать как выгодные.
Водород легче воздуха и поэтому быстро рассеивается в случае утечки. Это сводит к минимуму возможность накопления и возгорания. В случае, если водород воспламеняется, его пламя генерирует меньше тепла из-за отсутствия углерода. Это делает водород существенно более безопасным для потребителя, чем обычные углеводородные топлива (пропан-бутан или бензин).
Но в практическом применении, баллоны под высоким давлением сами являются источником опасности.
Американская компания Fuel Cell Store, почти 20 лет использует свойство растворимости водорода в металлах, для его хранения в бытовых условиях. Решение настолько простое и фантастически выгодное, что кажется просто невозможным. Однако, купить их продукцию может любой желающий. Называется такой способ – металлогидридным.
Как устроены и работают металлогидридные накопители водорода
Водород хранится под низким давлением внутри перезаправляемых картриджей, отвечающих самым передовым стандартам безопасности с точки зрения материалов и технологий. Емкости для хранения водорода SOLID-H заполнены калиброванными смесями металлов (металлическими порошками), которые поглощают водород с образованием гидрида, а при необходимости выделяют газ.
Самые популярные накопители SOLID-H обеспечивают избыточное давление водорода в несколько атмосфер при комнатной температуре. Это самый безопасный метод хранения легковоспламеняющихся газов. Если в водородной системе возникает утечка, например накопитель раздавят, то SOLID-H немедленно выделяет небольшую часть сохранённого газа. Остальной объём будет выпущен в течение нескольких часов.
Такая система хранения регулируется температурой: охлаждающее действие воды или воздуха способствует более быстрому и полному поглощению водорода в фазе зарядки, и наоборот, тепло способствует полному выходу газа.
За параметры объёма хранящегося газа и избыточного давления, отвечают разные смеси металлов.
Выбор сплава
Есть четыре базовые смеси, с разными техническими и ценовыми характеристиками:
- Сплав А – железо, титан и добавка редкоземельного металла (давление 1-10 атм.);
- Сплав L – никель и лантан (давление 2-3 атм.);
- Сплав M – никель, магний и рений (давление 4-5 атм.);
- Сплав Н – никель, ниобий и цирконий (давление 8-12 атм.).
Смесь А чуть дешевле, позволяет растворить в 1 л. наполнителя 530 литров водорода. Смеси L, M и H поглощают только 481 литр газа.
Скорость заряда и выхода водорода
Скорость разряда зависит от многих переменных. В общем случае не следует ожидать, что весь водород высвободится за считанные минуты. Требуется время, чтобы вывести 90% или более накопленного водорода из стандартного металлогидридного контейнера. Самые большие контейнеры SOLID-H ™ требуют 2-3 дней для полной разгрузки при нормальных условиях.
ИНФОРМАЦИЯ: Возможна разрядка картриджа за считанные секунды, но для этого требуется серьёзно повысить температуру накопителя (до 110-115˚C) и обеспечить теплообмен внутри ёмкости.
Например, баллон «MyH2 3000» при собственном объёме 5,8 л, накапливает 3000 литров водорода. Но давление внутри варьируется от 5 до 12 атм. Если не охлаждать картридж, то полная зарядка занимает 2 суток. Обдув обычным вентилятором, на порядок ускоряет процесс.
С выходом газа из баллона темпы сохраняются. Но для ускорения можно чуть подогревать картридж. Однако есть оригинальное решение – соединение маленьких накопителей в каскадную систему.
Например, вот этот миниатюрный баллончик BL-18 хранит 18 л водорода, скорость выхода газа при стандартных условиях, около 0,2л/мин. Если их соединить к единый каскад, то вырастает и суммарная скорость поглощения газа, и его выход.
Оригинальные металлогидридные компрессоры
Эта же фирма реализовала чрезвычайно любопытный тип металлогидридного компрессора. Правда он дорого стоит, около 9500 долларов, но зато работает бесшумно, и создаёт давление на выходе 410 атм.
Принцип его простой:
- Первый этап – при охлаждении заправляют картридж водородом;
- Второй этап – нагревают ёмкость и выпускают газ в специально подключенный баллон.
А баллон водорода с таким давлением, уже можно поместить в автомобиль, и добавив к нему трёхкиловаттный генератор на топливных элементах, превратить его в энергонезависимый транспорт.
Один недостаток, перевешивает все преимущества
Да, этот недостаток есть, и он такой мощный, что перевешивает все выгоды альтернативной энергетики на водородном топливе – цена оборудования.
Спасибо, что дочитали до конца! Не забывайте подписываться на канал и ставить "палец вверх", если статья Вам понравилась!!!