Найти в Дзене
Arduino как хобби

Датчик температуры DS18B20 и Arduino

Оглавление

DS18B20 - это цифровой датчик температуры. Датчик очень прост в использовании.

Во-первых, он цифровой, а во вторых - у него всего лишь один контакт, с которого мы получаем полезный сигнал. То есть, вы можете подключить к одному Arduino одновременно огромное количество этих сенсоров. Пинов будет более чем достаточно. Мало того, вы даже можете подключить несколько сенсоров к одному пину на Arduino! Но обо всем по порядку.

Arduino датчик температуры DS18B20

DS18B20 имеет различные форм-факторы. Так что выбор, какой именно использовать, остается за вами. Доступно три варианта: 8-Pin SO (150 mils), 8-Pin µSOP, и 3-Pin TO-92. Серфинг по eBay или Aliexpress показывает, что китайцы предлагают версию TO-92 во влагозащищенном корпусе. То есть, вы можете смело окунать подобное чудо в воду, использовать под дождем и т.д. и т.п. Эти сенсоры изготавливаются с тремя выходными контактами (черный - GND, красный - Vdd и белый - Data).

форм-факторы датчиков DS18B20
форм-факторы датчиков DS18B20

DS18B20 удобен в использовании. Запитать его можно через контакт data (в таком случае вы используете всего два контакта из трех для подключения!). Сенсор работает в диапазоне напряжений от 3.0 В до 5.5 В и измеряет температуру в диапазоне от -55°C до +125°C (от -67°F до +257°F) с точностью ±0.5°C (от -10°C до +85°C).

Еще один момент: вы можете подключить параллельно вплоть до 127 датчиков! и считывать показания температуры с каждого отдельно. Не совсем понятно, в каком проекте подобное может понадобится, но подключить два сенсора и контролировать температуру в холодильнике и морозильной камере можно. При этом вы оставите свободными кучу пинов на Arduino...

Для контроля температуры с помощью Arduino и DS18B20 понадобится

Программное обеспечение

  • Естественно, вам необходима Arduino IDE;
  • Библиотека OneWire library, которая значительно облегчает работу с Arduino и датчиком DS18B20;
  • Скетч...

Скачать Arduino IDE можно с официального сайта Arduino.

Библиотеку OneWire Library можно скачать на OneWire Project Page (желательно скачивать последнюю версию библиотеки).

Оборудование

  • Как минимум один цифровой датчик температуры DS18B20;
  • Контроллер Arduino (в данном примере используется Arduino Uno);
  • 3 коннектора;
  • Монтажная плата (Breadboard);
  • USB кабель для подключения Arduino к персональному компьютеру.

Подключение DS18B20 к Arduino

Датчик подключается элементарно.

Контакт GND с DS18B20 подключается к GND на Arduino.

Контакт Vdd с DS18B20 подключается к +5V на Arduino.

Контакт Data с DS18B20 подключается к любому цифровому пину на Arduino. В данном примере используется пин 2.

Единственное, что необходимо добавить из внешней дополнительной обвязки - это подтягивающий резистор на 4.7 КОм.

Схема подключения DS18B20 к Arduino показана ниже (в скетче, который будет приведен ниже, проверьте строки 10 и 65. В них указаны пины, к которым вы подключали контакт сигнала с датчика и режим питания!)

-2

Паразитное и обычное питание

Есть альтернативный вариант подключения - так называемое "паразитное" подключение. В этом случае мы не будем подключать пин +5V к пину Vdd на датчике DS18B20. Вместо этого мы подключим контакт Vdd с датчика DS18B20 к GND. Преимущества такого подключения очевидны: нам понадобится всего два коннектора!

Недостатком такого подключения является ограничение количества одновременно подключаемых сенсоров. Кабели для подключения должны быть максимально короткими!

В общем, с "паразитным" подключением надо быть аккуратнее и лучше его все-таки не использовать. Результаты (значения температур) могут оказаться самыми неожиданными.

Вам надо настроить правильный режим в скетче, чтобы снять достоверные показания с датчика:

  • Для "паразитного" режима в строке 65 надо указать: ds.write(0x44, 1);
  • Для обычного режима в строке 65 указывается: ds.write(0x44);

Скетч для Arduino и сенсора DS18B20

Убедитесь, что вы указали корректные пины!

В строке 10, где указано “OneWire ds(2);” устанавливается пин, к которому подключен контакт data с сенсора.

В этом примере использован пин 2, но значения пина по умолчанию в примере OneWire стоит на 10. Можно использовать и его.

##include <OneWire.h>

// пример использования библиотеки OneWire DS18S20, DS18B20, DS1822

OneWire ds(2); // на пине 10 (нужен резистор 4.7 КОм)

void setup(void) {

Serial.begin(9600);

}

void loop(void) {

byte i;

byte present = 0;

byte type_s;

byte data[12];

byte addr[8];

float celsius, fahrenheit;

if ( !ds.search(addr)) {

Serial.println("No more addresses.");

Serial.println();

ds.reset_search();

delay(250);

return;

}

Serial.print("ROM =");

for( i = 0; i < 8; i++) {

Serial.write(' ');

Serial.print(addr[i], HEX);

}

if (OneWire::crc8(addr, 7) != addr[7]) {

Serial.println("CRC is not valid!");

return;

}

Serial.println();

// первый байт определяет чип

switch (addr[0]) {

case 0x10:

Serial.println(" Chip = DS18S20"); // или более старый DS1820

type_s = 1;

break;

case 0x28:

Serial.println(" Chip = DS18B20");

type_s = 0;

break;

case 0x22:

Serial.println(" Chip = DS1822");

type_s = 0;

break;

default:

Serial.println("Device is not a DS18x20 family device.");

return;

}

ds.reset();

ds.select(addr);

ds.write(0x44); // начинаем преобразование, используя ds.write(0x44,1) с "паразитным" питанием

delay(1000); // 750 может быть достаточно, а может быть и не хватит

// мы могли бы использовать тут ds.depower(), но reset позаботится об этом

present = ds.reset();

ds.select(addr);

ds.write(0xBE);

Serial.print(" Data = ");

Serial.print(present, HEX);

Serial.print(" ");

for ( i = 0; i < 9; i++) { // нам необходимо 9 байт

data[i] = ds.read();

Serial.print(data[i], HEX);

Serial.print(" ");

}

Serial.print(" CRC=");

Serial.print(OneWire::crc8(data, 8), HEX);

Serial.println();

// конвертируем данный в фактическую температуру

// так как результат является 16 битным целым, его надо хранить в

// переменной с типом данных "int16_t", которая всегда равна 16 битам,

// даже если мы проводим компиляцию на 32-х битном процессоре

int16_t raw = (data[1] << 8) | data[0];

if (type_s) {

raw = raw << 3; // разрешение 9 бит по умолчанию

if (data[7] == 0x10) {

raw = (raw & 0xFFF0) + 12 - data[6];

}

} else {

byte cfg = (data[4] & 0x60);

// при маленьких значениях, малые биты не определены, давайте их обнулим

if (cfg == 0x00) raw = raw & ~7; // разрешение 9 бит, 93.75 мс

else if (cfg == 0x20) raw = raw & ~3; // разрешение 10 бит, 187.5 мс

else if (cfg == 0x40) raw = raw & ~1; // разрешение 11 бит, 375 мс

//// разрешение по умолчанию равно 12 бит, время преобразования - 750 мс

}

celsius = (float)raw / 16.0;

fahrenheit = celsius * 1.8 + 32.0;

Serial.print(" Temperature = ");

Serial.print(celsius);

Serial.print(" Celsius, ");

Serial.print(fahrenheit);

Serial.println(" Fahrenheit");

}