Найти в Дзене

Кинематика: график зависимость скорости от времени

В данной статьи изложены мысли, которые возникали при решении задач с сайта "Решу ЕГЭ" в разделе - https://phys-ege.sdamgia.ru/test?theme=204. Рисунки взяты оттуда же. 1. Общий подход Анализ и использование данного графика базируется на формуле перемещения тела S, м: Как видно из формулы площадь под графиком равна перемещению тела. Например, тело с 1 по 2 секунду на графике, представленном на рис. 1 прошло S = V * t = 2м/с * (2с - 1с) = 2м/с *1с = 2м 2. Чуть посложнее Если мы захотим найти перемещение тела с начала движения t = 0c до 4-ой секунды движения тела согласно графику на рис. 2, то нам необходимо найти сумму площадей трех геометрических фигур: с 0с по 1с - треугольник, с 1с по 2с прямоугольник, со 2с по 4с - трапеция. S треугольника = (1/2) * длину высоты треугольника * длину сторону треугольника, к которой проведена высота =
=(1/2) * 2м/с * (1с - 0с) = 1/2 * 2м/с * 1с = 1м
S прямоугольника мы находили в начале статьи = 2м
S трапеции = (1/2) * сумму оснований трапеции
Оглавление

В данной статьи изложены мысли, которые возникали при решении задач с сайта "Решу ЕГЭ" в разделе - https://phys-ege.sdamgia.ru/test?theme=204. Рисунки взяты оттуда же.

1. Общий подход

Анализ и использование данного графика базируется на формуле перемещения тела S, м:

Формула 1
Формула 1

Как видно из формулы площадь под графиком равна перемещению тела. Например, тело с 1 по 2 секунду на графике, представленном на рис. 1 прошло S = V * t = 2м/с * (2с - 1с) = 2м/с *1с = 2м

Рис. 1. График зависимости скорости от времени
Рис. 1. График зависимости скорости от времени

2. Чуть посложнее

Если мы захотим найти перемещение тела с начала движения t = 0c до 4-ой секунды движения тела согласно графику на рис. 2, то нам необходимо найти сумму площадей трех геометрических фигур: с 0с по 1с - треугольник, с 1с по 2с прямоугольник, со 2с по 4с - трапеция.

Рис. 2. Находим перемещение как сумму площадей геометрических фигур
Рис. 2. Находим перемещение как сумму площадей геометрических фигур

S треугольника = (1/2) * длину высоты треугольника * длину сторону треугольника, к которой проведена высота =
=(1/2) * 2м/с * (1с - 0с) = 1/2 * 2м/с * 1с =

S прямоугольника мы находили в начале статьи =
S трапеции = (1/2) * сумму оснований трапеции * высоту трапеции =
=(1/2) * (2м/с + 6м/с) * (4с - 2с) = (1/2) * 8м/с * 2с =

Итого
S = 1м + 2м + 8м = 11м

3. А если скорость равна нулю?

Не стоит пугаться нулевых скоростей на каком-либо интервале времени. Например с 3с по 5с на графике, представленном на рис. 3 перемещение тела равно 0м, т. к. площадь фигуры с 3с по 5с равна 0.

Рис. 3. Нулевое перемещение
Рис. 3. Нулевое перемещение

4. А если скорость ушла "в минус"?

Рис. 4. Отрицательная скорость
Рис. 4. Отрицательная скорость

А вот отрицательная скорость может вызвать некоторые затруднения. Здесь надо очень внимательно читать задание и не перепутать очень похожие физические величины: путь и перемещение. Путь - величина скалярная и поэтому для ее нахождения с помощью графика на рис. 4 надо зеркально отобразить отрицательные участки скорости и сложить площади фигур (см. Рис. 5)

Рис. 5. Зеркальное отображение отрицательных участков
Рис. 5. Зеркальное отображение отрицательных участков

Перемещение - величина векторная и поэтому при определении этой величины необходимо учитывать знак площади. Например, если нужно найти перемещение тела с 0с по 10с (см. рис. 5), то нужно площадь треугольника с 0с по 4с сложить с площадью треугольника с 8с по 10с и из полученного результата вычесть площадь треугольника с 4с по 8с.

5. Когда можно и не считать!

Рис. 6. Анализ графиков
Рис. 6. Анализ графиков

Иногда требуется визуальный анализ графиков. Например, необходимо определить какой автомобиль из 4-х с 0с до 15с проехал наибольшее расстояние?
Рассматривая площади геометрических фигур под графиками (см. рис. 6) видим, что площадь больше у графика (и машины) №3.

6. Переходим к ускорению

До сих пор мы на линейных графиках с координатами скорости и времени (см. рис. 7) видели скорость, время и перемещение (или путь).

Рис. 7. Ищем на графике ускорение
Рис. 7. Ищем на графике ускорение

А тут ещё прячется ускорение. Давайте попробуем его найти. Вспоминаем формулу равноускоренного движения

Формула 2 . Формула равноускоренного движения
Формула 2 . Формула равноускоренного движения

Рассматривая график на рис. 7 определим Vo при t = 0с => Vo = 2м/с.
А теперь возьмём на графике точку в момент времени
t = 1c и определим по графику скорость в этот момент времени => V = 4м/с.
Подставляем найденные значения в формулу 2 =>
4м/с = 2м/с +
a * 1c => а = (4м/с - 2м/с) / 1с = 2м/с2

Возвращаемся к графику (см. рис. 8)

Рис. 8. Находим уравнение графика
Рис. 8. Находим уравнение графика

Теперь мы можем сказать, что на рис. 8 представлен график линейного уравнения V = Vo + a*t = 2 + 2*t. Эти знания расширяют область использования графика на рис. 8. Например мы можем сказать, что при
t = 10c скорость будет равна V = 2м/с + 2м/с2*10с = 22м/с

7. Ищем ускорение на произвольном прямолинейном участке графика

Нас могут попросить найти ускорение тела на произвольном прямолинейном участке графика. Например с 6с по 10с на графике, представленном на рис. 9.

Рис. 9. Находим ускорение на произвольном прямолинейном участке графика
Рис. 9. Находим ускорение на произвольном прямолинейном участке графика

Для этого получим формулу для ускорения, усложнив формулу 2 заменив t на (t - to):

Формула 3.  Формула для определения ускорения
Формула 3. Формула для определения ускорения

Возвращаемся к поиску ускорения:
а = (5м/с - (-5м/с))/(10с - 6с) = 10м/с / 4с = 2.5м/с2

8. Ищем координаты тела

Зная начальные координаты тела, начальную скорость, ускорение тела и время перемещения можем найти координаты тела в любой момент времен (формула 4)

Формула 4. Уравнение для координаты тела
Формула 4. Уравнение для координаты тела

9. Ищем скорость в пространстве

Рис. 10. Скорость в пространстве
Рис. 10. Скорость в пространстве

Мы можем знать значение проекций скорости на оси: х, y и z. Нас могут попросить найти модуль скорости. Ищем по формуле 5:

Формула 5. Формула для модуля скорости
Формула 5. Формула для модуля скорости

Для понимания формулы 5 можно представить модуль скорости диагональю параллелепипеда, а проекции скорости сторонами параллелепипеда (см. рис. 11)

рис. 11 Расшифровка формулы 4
рис. 11 Расшифровка формулы 4

Заключение

Пока, это все мысли, которые появлялись во время решения задач в разделе сайта "Решу ЕГЭ" по адресу https://phys-ege.sdamgia.ru/test?theme=204. Пишите в комментариях, если что-то напрашивается добавить.

Автор с благодарностью примет любые пожертвования на развитие канала "От сложного к простому" https://money.yandex.ru/to/4100170126360.