Гелиотермальная энергетика.
Фотоэффект — не единственный способ получения электричества из солнечного света, который использует возобновляемая энергетика. Некоторое распространение получили системы типа solar-thermal, которые предполагают использование тепловой составляющей солнечного света. Так как удельная тепловая энергия, передаваемая Солнцем, относительно низка (иначе жизнь на планете не была бы возможна), то были придуманы и реализованы проекты по концентрации данной энергии.
Наиболее применимыми оказались концентрационные системы — те, что с помощью зеркал отражают солнечный свет и собирают его в одном месте. Это получило название “солнечные башни”, так как выглядит данная электростанция именно так: поле из большого количества зеркал с башней в центре. На башне, в фокусе отражения зеркал, находится бак с жидкостью. По технологическим причинам это обычно расплав солей. Зеркала поворотные в двух плоскостях, чтобы в течении дня и в процессе движения Солнца по небу отражать свет в одну и ту же точку. Расплав из башни переносится в более удобное место для использования и уже там греет пар, который крутит генераторы. Плюсы данной системы — использование синхронных генераторов, минусы — цена, которая значительно выше фотовольтаики.
Так же было придумано более эффективная концентрация солнечного света за счёт использования параболических зеркал. Принцип тот же, что и ранее описанный, только тут теплоноситель движется по желобам, находящимся в фокусе парабол.
Крупнейшая солнечная электростанция в мире — СЭС Уарзат (Ouarzazate Solar Power Station) является комбинацией солнечной башни и параболических зеркал и имеет мощность 510 МВт, при стоимости порядка 2,2 млрд $.
Общие плюсы данного рода систем — в их более высокой экологической чистоте, более стабильной и качественной энергии по сравнению с фотовольтаикой. Минусы (кроме цены) — системы solar-thermal ещё больше зависят от хорошей погоды, поэтому сегодня найти их можно в пустынях юга США, севере Африки и в некоторых районах Китая примерно на одной широте. Также подразумевается поддержка зеркал в соответствующем состоянии, так как даже тонкий слой песка (что нередко для пустыни) сильно снижает их отражающие свойства. Тем не менее главным минусом подобных систем является цена, которая даже в условиях западных стран слишком высока и неконкурентноспособна, из-за чего подобных электростанций достаточно мало.
Ветроэнергетика
Суть ветроэнергетики достаточно очевидна и заключается в использовании движения воздушных масс для вращения генераторов. Из-за нерегулируемой скорости ветра наиболее распространенными являются ветрогенераторы, оборудованные асинхронными генераторами электрического тока, максимальная мощность которых сейчас достигает 15 МВт. Главный нюанс данных вида генераторов заключается в том, что для создания собственного магнитного поля они потребляют реактивную мощность из сети, поставляя в неё мощность активную, что является некоторой проблемой и вынуждает компенсировать реактивную мощность а также исключает запуск без подключения к сети.
Данный вид электростанций отличается высокой экологической чистотой, однако он не лишён ряда недостатков. Кроме вышеприведенной проблемы с типом генераторов имеется очевидный нюанс со стабильностью ветра. Поэтому строительство данного типа электростанций ведётся в районах сильных и максимально стабильных ветров. Это, чаще всего, прибрежные полосы (обычно со стороны моря) и предгорные районы.
Опоры ветряков достаточно сильно вибрируют, что при установки на земле (on-shore) ускоряет эрозию почвы, а при установке на воде (off-shore) не идёт на пользу местным обитателям. Также, в случае, если ветряки расположены на маршрутах миграции птиц, экологически чистая энергия не идет на пользу биосфере. Птицы не видят лопасти ветряков, могут в них попадать. Впрочем, различные исследования EIA (environmental impact assessment — оценка воздействий на окружающую среду) не имеют единого мнение на сей счёт.
Несмотря на приведенные недостатки, строительство ВЭС сегодня идёт высокими темпами, особенно это касается оффшорных электростанций на севере Европы.
Свалочный биогаз
Рост современных мегаполисов сопровождается значительным увеличением ежегодно образующихся объемов твердых коммунальных отходов (ТКО). Согласно данным Росприроднадзора, в России образовалось 70 млн. т. ТКО, и ежегодно их количество увеличивается на 3-4 %. Объем отходов коммунального сектора крупнейшего по численности населения региона – Московской области – составляет около 3,835 млн. т. в год. Основным способом их утилизации в России в настоящее время является вывоз отходов на полигоны, зачастую без сортировки. Бесконтрольная эмиссия биогаза, образующегося в теле полигона в результате анаэробного брожения биомассы (свалочного газа, landfill-газа), приводит к выбросу в окружающую среду целого ряда газообразных компонентов, в том числе, токсичных, а также самовозгоранию полигонов. Поэтому задача утилизации отходов, увеличения доли их переработки и получения из них вторичных ресурсов, безусловно, актуальна. Это приведет, в частности, к сокращению негативного воздействия на окружающую среду.
В настоящее время в мире разработаны и применяются разнообразные технологии переработки и утилизации твердых коммунальных отходов, в том числе:
- биотермическое аэробное компостирование;
- анаэробная ферментация ТКО на полигонах с удалением и использованием свалочного газа;
- сепарация / сортировка ТКО и дальнейшая переработка вторичных ресурсов;
- термическая переработка ТКО (сжигание, пиролиз, газификация) с получением энергии и др.
Развитие энергетических технологий получения энергии из свалочного газа, с одной стороны, и рост масштабов и количества полигонов, особенно вблизи крупных мегаполисов, с другой, позволяет рассматривать свалочный газ как стабильный и значительный источник энергии. Начальным этапом процесса утилизации является создание системы сбора газа (сооружение скважин и трубопроводов, собирающих газ с объема полигона), если таковая система не была сооружена при строительстве полигона. При дальнейшем использовании свалочного газа в энергетических установках необходимо наличие модуля очистки, удаляющего из газа наиболее опасные с точки зрения окисления или шлакообразования примеси. Зарубежный опыт показывает, что даже тепловые двигатели требуют предварительного удаления из топливного газа некоторых соединений, присутствие которых ведет к ускоренной деградации узлов и систем энергоустановок.
Далее очищенный свалочный газ может быть переработан для получения энергетических продуктов различными технологиями, в особенности на тепловых станциях.