Найти в Дзене
Студент, учись!

Свойства логарифмов. Шпаргалка с формулами.

Любую значимую логарифмическую задачу невозможно решить, не зная особых правил логарифмов. А точнее – основных свойств. К счастью, этих свойств совсем не много и выучить их не составит труда. Но знать их нужно как слева направо, так и в обратную сторону. Рассмотрим отдельные свойства более детально: Не каждый студент может себе позволить за семестр в ВУЗе отдать 100 000 ₽. Но круто, что есть гранты на учебу. Грант-на-вуз.рф – это возможность учиться на желанной специальности. По ссылке каждый получит бонус от 300 ₽ до 100 000 ₽ – грант-на-вуз.рф Второе свойство применяется, когда меняется местами аргумент и основание логарифма, при этом логарифм переносится в знаменатель. Напоминаем про сервис грант-на-вуз.рф. Не упусти свой шанс изучать то, что тебе нравится. Ну или просто сэкономить на учебе. Ты точно получишь от 300 ₽ до 100 000 ₽, перейдя по ссылке грант-на-вуз.рф! Мы разобрали основные свойства логарифмов. Теперь ни одно неравенство или уравнение не останется нерешенны

Любую значимую логарифмическую задачу невозможно решить, не зная особых правил логарифмов. А точнее – основных свойств. К счастью, этих свойств совсем не много и выучить их не составит труда. Но знать их нужно как слева направо, так и в обратную сторону.

источник: Яндекс
источник: Яндекс

Рассмотрим отдельные свойства более детально:

  • Логарифмический ноль. Элементарное свойство, которое нужно обязательно помнить. Какое бы ни было основание логарифма, если в аргументе стоит 1, то логарифм всегда равен 0.
  • Логарифмическая единица. Еще одно простое свойство: если аргумент и основание логарифма одинаковы, то значение логарифма будет равно единице.
источник: Яндекс
источник: Яндекс

  • Основное логарифмическое тождество. Отличное свойство, превращающее четырехэтажное выражение в простейшую b. Суть этой формулы: основание a, возведенное в степень логарифма с основанием а, будет равно b.
источник: Яндекс
источник: Яндекс

  • Сумма логарифмов. При умножении логарифмируемых чисел, можно сделать из них сумму 2х логарифмов, у которых будут одинаковые основания. И так невычислимые логарифмы становятся простыми.
источник: Яндекс
источник: Яндекс

  • Логарифм частного. Здесь ситуация схожая с суммой логарифмов. При делении чисел мы получаем разность двух логарифмов с одинаковым основанием.
источник: Яндекс
источник: Яндекс
Реклама
Реклама
Не каждый студент может себе позволить за семестр в ВУЗе отдать 100 000 ₽. Но круто, что есть гранты на учебу. Грант-на-вуз.рф это возможность учиться на желанной специальности. По ссылке каждый получит бонус от 300 ₽ до 100 000 ₽ грант-на-вуз.рф
  • Вынесение показателя степени из логарифма. Тут действуют целых 3 правила. Все просто: если степень находится в основании или аргументе логарифма, то ее можно вынести за пределы логарифма, в соответствии с этими формулами:
источник: Яндекс
источник: Яндекс
источник: Яндекс
источник: Яндекс

  • Формулы перехода к новому основанию. Они нужны для выражений с логарифмами, у которых разные основания. Такие формулы в основном используются при решении логарифмических неравенств и уравнений.
источник: Яндекс
источник: Яндекс

Второе свойство применяется, когда меняется местами аргумент и основание логарифма, при этом логарифм переносится в знаменатель.

Реклама
Реклама
Напоминаем про сервис грант-на-вуз.рф. Не упусти свой шанс изучать то, что тебе нравится. Ну или просто сэкономить на учебе. Ты точно получишь от 300 ₽ до 100 000 ₽, перейдя по ссылке грант-на-вуз.рф!

Мы разобрали основные свойства логарифмов. Теперь ни одно неравенство или уравнение не останется нерешенным ;)

Спасибо, что прочитали статью. Не забывайте про подписку на канал, а также рекомендую почитать канал наших друзей:
https://zen.yandex.ru/fgbnuac — последние научные достижения и лучшие образовательные практики.
https://zen.yandex.ru/id/5e164c941febd400ae3b4705 — ЕВРОПЕЙСКОЕ ВЫСШЕЕ ОБРАЗОВАНИЕ. Международная компания, оказывающая консультационные, сопроводительные и информационные услуги в сфере высшего образования в Европе. Официальный сайт - https://eurounis.com.
Хорошего дня и не болейте.