Найти тему
Строю для себя

Поспорил, что найду площадь многоугольника в одно действие за 30 сек. Рассказываю метод

Предмет математики настолько серьезен, что полезно не упустить случая сделать его немного занимательным
(Паскаль)

Добрый день, уважаемые гости и подписчики моего канала!

Вспомнил забавный случай, как около года назад я поспорил с дочкой, что найду площадь любого из представленных выше многоугольников за 30 секунд в одно действие, пока она будет вычислять её множеством действий, как учили в школе.

Выиграл. Дочь проспорила мороженое.

А раз вспомнил об этом, хочу рассказать и Вам, как просто в одно действие используя одну единственную формулу можно точно вычислить площадь многоугольника любой конфигурации и нет необходимости раскладывать фигуру на несколько простейших.

Но, для таких многоугольников есть одно важное условие: каждая вершина должна быть целочисленная, т.е. находиться именно в узле сетки.

Сетка - клеточная поверхность, на которой изображена фигура.
Узел - пересечение линий сетки.

Сетка может быть выполнена с любой единицей измерения, ведь площадь измеряется в квадратах выбранной единицы. Если ячейка 1х1 см., то это 1 кв.см., 1х1 м. - это 1 кв.м. и т.д.

Так вот, существует очень простая формула, которая связывает площадь любого многоугольника с количеством узлов сетки, находящихся на границах отрезков фигуры и внутри самой фигуры. Формулу вывел австрийский математик Георг Александр Пик в 1899 г., в честь которого и называется она формулой (теоремой) Пика:

-2

где:

S - площадь многоугольника;
В - количество узлов внутри фигуры (шт.);
Г - количество узлов, расположенных в вершинах и на отрезках фигуры (шт).

Чтобы стало всё понятно, приведу пример со сложным многоугольником. Нам требуется найти площадь фигуры, представленной ниже:

-3

Теперь, считаем узлы, расположенные внутри, на вершинах и на отрезках фигуры. Это будут значения В и Г, соответственно:

-4

Получаем, что В=16, Г=7, теперь достаточно подставить значения в формулу и получаем: S=Г/2 + В - 1 = 7/2 + 16 -1 = 18,5 кв.ед.

Готово. Площадь равна 18,5 клеток. Вы можете всё перепроверить и будете приятно удивлены!

Плюсы в том, что такая формула легко запоминается и проста в применении! Минус конечно тоже есть, как я упоминал выше - формула не дает точного результата, если хотя бы одна из вершин многоугольника находится вне узла сетки (не целочисленная).

-5
Моя дочь уже с успехом применяет эту формулу на занятиях в школе и быстро находит ответы, хотя некоторые учителя не одобряют такой подход и всё же склоняют к классической схеме: разделить многоугольник на элементарные фигуры, вычислить их площади, пользуясь стандартными формулами и сложив их, получить результат.

Но, всё же думаю, для скорости расчетов - формула полезна. Обязательно расскажите детям!

Очень надеюсь, что статья Вам понравилась! Удачи Вам и добра!

Предлагаю несколько публикаций, которые будут Вам интересны:

Метод быстрого счета. Как в старину перемножали многозначные числа без таблиц умножения? (крестьянский метод)

Какую площадь займет все население планеты, собравшись плечом к плечу? Удивитесь, но этот участок можно объехать за 1 час

Секрет строительного угольника Свенсона. Тригонометрическая зависимость шкал и какие 4 инструмента он объединяет?