Найти в Дзене

Водородные автомобили

«Если мы используем “чистый” электромобиль, то и электроэнергия, которая приводит его в движение, должна вырабатываться с помощью “чистой” энергии: солнце, вода или ветер. Однако время и продолжительность, когда мы будем производить такую электроэнергию, не будет совпадать с тем временем, когда мы нуждаемся в ней. Это может быть суточная разница, погодная, сезонная и т.д. Значит, нам надо хранить электроэнергию в батареях долгое время — понадобятся гигантские хранилища. Это нереально, тем более, что нынешние батареи не могут долго хранить энергию. Именно поэтому мы не мыслим будущего без водорода и автомобилей на топливных элементах», — это слова Геральда Килманна, вице-президента по исследованиям и разработкам Toyota.
Японский автопроизводитель видит свое будущее в развитии технологий на топливных элементах, где основным топливом должен стать водород. Но где и как его добывают таким способом, чтобы весь процесс стал экологически чистым? Для ответа на этот вопрос мы отправились в Япони

«Если мы используем “чистый” электромобиль, то и электроэнергия, которая приводит его в движение, должна вырабатываться с помощью “чистой” энергии: солнце, вода или ветер. Однако время и продолжительность, когда мы будем производить такую электроэнергию, не будет совпадать с тем временем, когда мы нуждаемся в ней. Это может быть суточная разница, погодная, сезонная и т.д. Значит, нам надо хранить электроэнергию в батареях долгое время — понадобятся гигантские хранилища. Это нереально, тем более, что нынешние батареи не могут долго хранить энергию. Именно поэтому мы не мыслим будущего без водорода и автомобилей на топливных элементах», — это слова Геральда Килманна, вице-президента по исследованиям и разработкам Toyota.
Японский автопроизводитель видит свое будущее в развитии технологий на топливных элементах, где основным топливом должен стать водород. Но где и как его добывают таким способом, чтобы весь процесс стал экологически чистым? Для ответа на этот вопрос мы отправились в Японию на небольшую опытно-экспериментальную фабрику Hama Wing в Иокогаме, что в 40 минутах езды от Токио. Ее начали строить в 2015 году, а уже в 2018 фабрика должна выйти на проектную мощность. Речь идет о ветряной электростанции, расположенной на самом берегу бухты Иокогама, которая совмещена с производством водорода путем электролиза воды и его хранилищем.
Электричество необходимо для электролизной установки, которая расщепляет воду на кислород и водород, а также компрессоров, которые сжимают водород для последующего стационарного хранения в резервуаре, расположенном на самой станции, либо для транспортировки в грузовиках-заправщиках до конечного потребителя. В данном случае потребителями являются местные предприятия, использующие 2,5-тонные вилочные погрузчики на топливных элементах. Излишки электричества, вырабатываемые ветрогенератором, либо запасаются в хранилище с аккумуляторами, либо отдаются в электросеть города посредством распределительной щитовой. Это если вкратце, но самое интересное кроется в деталях.
Сам процесс выработки водорода происходит в электролизной установке, изготовленной компанией Toshiba. Это небольшой контейнер (длина — 6,2 м, ширина — 2,4 м, высота — 2,9 м), в котором находятся воздушный компрессор, электролизер, охладитель и воздушный ресивер. Рядом с электролизной установкой расположен небольшой резервуар с азотом. Азот нужен для работы охладителя, так как в процессе электролиза выделяется тепло — водород находится в нагретом состоянии. Таким образом система охлаждает всю установку и полученный газ, чтобы исключить возможность его взрыва.
Для транспортировки водорода к конечному потребителю используются дизель-электрические гибридные грузовики Hino Dutro Hybrid последовательно-параллельной схемы, выполненной на манер Toyota Prius. Одного грузовика хватает, чтобы заправить 6 погрузчиков на топливных элементах. Грузовики по сути являются мобильными водородоснабжающими АЗС: они оснащены оборудованием, позволяющим осуществлять закачку водорода под давлением 35 МПа непосредственно в погрузчик на местах, где отсутствует необходимая заправочная инфраструктура.
На заправку «полного бака» одного погрузчика, который вмещает 1,2 кг водорода, уходит 3 минуты. Этого запаса хватает на 8 часов непрерывной работы при температуре окружающей среды 0-40°С. Также на борту стоит преобразователь и бытовая розетка с напряжением 100В — таким образом погрузчик в любой момент может стать на 15 часов источником бесперебойного питания, к которому можно подключать приборы и устройства мощностью до 1 кВт.
У проекта Hama Wing есть несколько важных целей: первая — продемонстрировать всю технологическую цепочку производства и реализации низкоуглеродистого водорода от его получения и хранения до снабжения конечного потребителя; вторая — создать простую и понятную интегрированную систему, которая даст возможность оценить как практическую доступность водорода в качестве вида топлива, так и потенциал дальнейшего коммерческого использования этой системы; третья — использовать производство водорода как эффективную меру для развития региона и борьбы с глобальным потеплением.
О «социальной» значимости данного проекта говорит тот факт, что в центре почти 4-миллионной Иокогамы в парке Ринко, где любят отдыхать местные жители, установлено электронное табло, которое круглосуточно показывает информацию о текущем состоянии ветряка и количестве выработанной электроэнергии. Более того, каждый год порядка 14000 человек посещает «водородную фабрику», чтобы воочию увидеть, как происходит выработка топлива будущего.

Как вы могли понять, фабрика Hama Wing, равно как и вышеупомянутый автомобиль Toyota Mirai, — это лишь начало, часть глобальной идеи японцев по переводу всего и вся на электричество и водород как энергоноситель, получаемые из возобновляемых источников энергии. Например, Toyota уже реализует программу строительства «зданий с нулевыми выбросами», использующих технологию на топливных элементах.
Единственный на данный момент серийный автомобиль с топливными элементами – Toyota Mirai. В конце прошлого года его начали продавать за солидные $57 400 в Японии, в ближайшее время Mirai выйдет на рынки США, Канады и Европы. Этот сопоставимый по размерам с Toyota Camry седан скомпонован так: электромотор и контроллер – на передней оси, за ним – блок топливных ячеек с конвертером, под пассажирским диваном и в багажнике – два бака с водородом и небольшая литий-ионная батарея, необходимая для рекуперативного торможения. Все эти элементы установлены максимально низко, что гарантирует достаточно много места в салоне.
Чтобы Mirai ездил, его нужно заправлять как и обычное авто. Только не бензином, а сжатым водородом. Процесс заправки занимает несколько минут, а не минимум полчаса-час, как у современных электрокаров. Запас хода водородного автомобиля – более 500 км на одном баке, что лучше, чем у самого навороченного электрокара современности Tesla Model S (около 430 км). Электромобили попроще проезжают на одной зарядке около 200 км.
На данный момент большой запас хода и быстрое время заправки – единственные преимущества водородных электромобилей перед традиционными электрокарами на литий-ионных аккумуляторах. Потери электроэнергии в связке «электросеть – зарядное устройство – литий-ионный аккумулятор – электромобиль» составляют не более 15%. В случае с водородным автомобилем потери энергии (электролиз воды, сжатие водорода, его транспортировка, производство электроэнергии в топливных ячейках) достигают немыслимых 60%.
Для производства 1 кг сжатого водорода (по объему он равнозначен 1 галлону, либо же 3,8 л) путем электролиза воды нужно потратить от 50 до 80 кВт*ч электроэнергии. КПД процесса на данный момент – не более 70%. Два бака Toyota Mirai рассчитаны на 5 галлонов водорода, соответственно, на преодоление каждых 100 км пути нужно «вложить» минимум 50 кВт*ч электроэнергии. Это значительно больше, чем средние 20 кВт*ч на «сотню» у Tesla Model S.
Хранение и транспортировка сжатого водорода – также непростая и затратная задача. Это топливо перевозят цистернами, выдерживающими давление до 690 атмосфер (для сравнения: популярный на наших АЗС пропан-бутан транспортируют под давлением 16 атмосфер). Водород – крайне взрывоопасное вещество, поэтому чтобы открыть водородную АЗС или выпустить на рынок автомобиль на топливных ячейках, нужно вложить намного больше средств, чем в случае с электрокаром на литий-ионных батареях.
Инвестиции Toyota, Nissan и Honda в инфраструктуру для водородных автомобилей говорят о том, что они все же видят в таких машинах будущее. Точнее – источник прибыли. Сейчас галлон водорода на американской АЗС стоит около $10. Средняя цена бензина по Штатам – $2,8 за галлон. В переводе на обычный 95-й Mirai потребляет примерно 13 л/100 км, что вполне адекватно как для массивного седана. Экологи спокойны, ведь Mirai не вредит окружающей среде. Японские автогиганты рады, ведь их автомобили все так же требуют регулярных финансовых вливаний в виде заправки. На контролируемых ими АЗС.
По данным ресурса H2Stations.org, в мире действуют или вот-вот должны быть запущены более 600 водородных заправочных станций. Они установлены в США, Западной Европе, Китае и Японии. Это пока чересчур много как для единственного серийного пассажирского автомобиля на топливных элементах Toyota Mirai. Но уже скоро у него могут появиться конкуренты: концепты подобных транспортных средств есть у Honda, Nissan, Volkswagen, Mercedes-Benz и других крупных производителей.

Kia решила показать на выставке CES прототип нового Niro EV, который не только имеет электрический мотор, но и обладает массой современных «штук». Например, он уже сейчас может работать с перспективными мобильными сетями 5G, которые в десятки (если не сотни) раз быстрее нынешних. Благодаря 5G автомобиль получит возможность «разговаривать» с другими машинами, с домом хозяина и так далее. А еще эта Киа сможет общаться с пешеходами — различные сообщения появляются на «решетке радиатора» (написано в кавычках, ибо никакой решетки тут нет).
презентация нового водородного кроссовера Hyundai прошла не на автосалоне в Детройте, который откроется уже скоро, а на выставке гаджетов. Итак, встречайте — Hyundai Nexo. Автомобиль, который подтверждает, что корейцы решили бороться с Toyota за перспективный рынок водородомобилей. Кстати о том, как делают водород и почему именно он (а вовсе не электричество) имеет все шансы заменить в будущем традиционный бензин Три баллона для водорода расположены тут под полом задней части кузова и вмещают 6,35 килограмма топлива, а запас хода на одной заправке доходит до 595 километров.
А еще именно Hyundai Nexo станет первой машиной, которая примет участие в испытаниях автопилота четвёртого уровня автономности (подразумевает фактически полный отказ от водителя, его премьера на серийных автомобилях намечена на 2021 год). «Мы понимаем, что будущее — за автономным транспортом, и соответствующие технологии нуждаются в проверке в реальных условиях, что обеспечит их быстрое, безопасное и масштабируемое развертывание», — отметил Янг У Чхоль, вице-президент Hyundai Motor.
Заявленный запас хода Niro EV — меньше 400 километров. По нынешним временам это мало, поэтому корейцы и не акцентируют внимание на этих цифрах. Зато в салон они рекомендуют всем заглянуть. Ведь там новый информационный комплекс, который может появиться на многих моделях компании. Главные особенности: переход на сенсорное управление и функция распознавания голосов и лиц. Последнее означает, что машина сама будет понимать, кто садится за руль или на пассажирские сиденья. И автоматически настроит кресла и включит любимое радио.