Найти в Дзене
Татьяна Буркова

пифагоровы треугольники

Футбольное поле- это прямоугольная площадка длиной 90м и шириной 60м. как разметить такую площадку? Прямоугольник на листе бумаги строят при помощи линейки и циркуля или линейки и угольника. Эти приборы слишком малы для работы на местности. Они не обеспечат нужной точности в построении прямых углов такой площадки, как футбольное поле. Если же сделать линейку, циркуль и угольник достаточно больших размеров, то ими будет невозможно пользоваться. С давних времен известен очень простой способ построения на местности прямых углов. Выполним такое построение. Возьмем шнур и три колышка. На шнуре отметим 12 равных долей. Затем узлами выделим три части шнура МВ, ВС и СN так, чтобы первая часть состояла из пяти, вторая из четырех и последняя из трех таких долей. Узлы М и N свяжем вместе и обозначим вновь полученный узел через А. С помощью колышков натянем часть шнура ВС вдоль данной прямой так, чтобы точка С совпала с точкой, через которую должен быть проведен перпендикуляр к данной прямой.

Футбольное поле- это прямоугольная площадка длиной 90м и шириной 60м. как разметить такую площадку? Прямоугольник на листе бумаги строят при помощи линейки и циркуля или линейки и угольника. Эти приборы слишком малы для работы на местности. Они не обеспечат нужной точности в построении прямых углов такой площадки, как футбольное поле. Если же сделать линейку, циркуль и угольник достаточно больших размеров, то ими будет невозможно пользоваться.

С давних времен известен очень простой способ построения на местности прямых углов. Выполним такое построение. Возьмем шнур и три колышка. На шнуре отметим 12 равных долей. Затем узлами выделим три части шнура МВ, ВС и СN так, чтобы первая часть состояла из пяти, вторая из четырех и последняя из трех таких долей. Узлы М и N свяжем вместе и обозначим вновь полученный узел через А.

С помощью колышков натянем часть шнура ВС вдоль данной прямой так, чтобы точка С совпала с точкой, через которую должен быть проведен перпендикуляр к данной прямой. Потом оттянем шнур за узел А так, чтобы участки АВ и АС стали прямолинейными, и вобьем в точке, где будет находиться узел А, колышек. Задача построения на местности прямого угла решена, так как угол АСВ прямой.

Чтобы убедиться в этом, докажем, что прямоугольным будет всякий треугольник, стороны которого, измеренные какой-нибудь линейной единицей измерения, выражаются числами 3, 4 и 5. Для доказательства возьмем прямоугольный треугольник с катетами, равными двум меньшим сторонам данного треугольника, и найдем его гипотезу х. по теореме Пифагора х2=32+42. Поэтому х=5. Таким образом, три стороны данного треугольника соответственно равны трем сторонам прямоугольного треугольника. А отсюда следует, что и данный треугольник- прямоугольный.

Доказанное свойство треугольника со сторонами 3, 4 и 5 было, по-видимому, известно еще древнеегипетским землемерам. Поэтому такой треугольник называют египетским. Всякий целочисленный треугольник (целочисленным треугольником называют треугольник, длины сторон которого выражаются целыми числами), подобный египетскому, так же является прямоугольным. Существуют ли другие целочисленные прямоугольные треугольники? Если катеты и гипотенузу какого-нибудь целочисленного прямоугольного треугольника обозначить буквами х, у и z, то по теореме Пифагора получим:

Х2+у2=z2.

Оказывается, что верно и обратное, т.е если х, у и z- натуральные числа, удовлетворяющие уравнению(1), то треугольник со сторонами х, у и z- прямоугольный. Целочисленный прямоугольный треугольник для краткости иногда называют пифагоровым.

Наше рассуждение показывает, что задача отыскания всех пифагоровых треугольников сводится к решению уравнения (1) в натуральных числах.