В первые дни января обозреватель «Новой газеты» Юлия Латынина опубликовала большую статью с подзаголовком «История самого крупного научного фейка ХХ века». В ней говорится о так называемой «хоккейной клюшке Манна» — представленной более двадцати лет назад реконструкции средней температуры в Северном полушарии. Назвав эту реконструкцию «фейком», автор статьи пошла дальше и поставила под сомнение саму концепцию глобального изменения климата под влиянием человеческой деятельности.
По просьбе N + 1 публикацию Латыниной прокомментировал климатолог, старший научный сотрудник Лаборатории теории климата Института физики атмосферы имени Обухова РАН Александр Чернокульский. В первой части материала он останавливается на ключевых пунктах рассуждений Латыниной и рассказывает, как климатология объясняет изменения климата, происходившие в прошлом.
Физика климата
Теперь пришла пора отбросить ложную посылку о «хоккейной клюшке» как «иконе» климатологии. График Манна ничего не должен был доказывать, не был никакой иконой и уж точно не лежал в основе науки об изменениях климата. Как и в случае с любой другой наукой, климатология базируется не на графиках, а на изучении законов природы — в первую очередь законов гидро- и термодинамики.
Именно на основании этих законов и была выдвинута теория об антропогенной причине современных изменений климата. Основные доказательства этой теории были получены уже к концу 1970-х годов и в дальнейшем только уточнялись. На данный момент они могут быть сформулированы в следующем виде:
А. Углекислый газ в атмосфере: его свойства, быстрый рост, атрибуция роста
То, что Земля, исходя из радиационного равновесия (с учетом расстояния до Солнца и величины приходящей от него энергии) должна иметь гораздо меньшую температуру воздуха, чем она имеет на самом деле, предположил еще Джозеф Фурье в начале XIX века.
Разницу (она составляет около 33 градусов Цельсия) Фурье списал на отепляющее воздействие атмосферы, которое переизлучает к Земле chaleur obscure («невидимое тепло» — то есть длинноволновое излучение).
В середине XIX века Джон Тиндал определил, что ответственными за это отепляющее воздействие являются, в первую очередь, водяной пар, углекислый газ и метан.
С тех пор методы спектроскопии продвинулись существенно дальше, благодаря чему удалось определить основные полосы поглощения парниковых газов и даже измерить количество приходящей энергии к поверхности Земли вследствие переизлучения парниковыми газами.
Здесь стоит отметить, что само сравнение с парником (появилось в начале ХХ века благодаря Нильсу Экхольму) не стоит принимать буквально: в реальном парнике тепло задерживается в первую очередь за счет «запирания» конвекции.
Парниковый эффект атмосферы действует на другой процесс теплопередачи — на электромагнитное излучение: атмосфера практически прозрачна для коротковолнового излучения от Солнца, но при этом задерживает часть длинноволнового излучения от поверхности Земли (за счет дипольного момента у парниковых газов при вращательных и колебательных переходах).
В результате сама атмосфера (а точнее, нижний ее слой — тропосфера — высотой примерно 5–7 километров) становится источником излучения и переизлучает длинноволновую радиацию обратно к поверхности Земли и в космос. Поскольку с высотой температура воздуха в тропосфере убывает, в космос излучается меньшее количество радиации, чем уходило бы при отсутствии атмосферы.
Первые оценки теплового баланса поверхности Земли были сделаны Михаилом Ивановичем Будыко в 1956 году. На сегодняшний день на основе нескольких долгопериодных спутниковых и наземных наблюдений определены основные значения глобально-осредненных радиационных и тепловых потоков в земной климатической системе.
Правда, некоторые элементы определены в достаточно широком диапазоне (например, потоки явного и скрытого тепла от поверхности). Их уточнение — важная задача климатологии на ближайшие годы.
Впрочем, важен переход от статической картины (неизменный парниковый эффект) к динамической. Осуществить его удалось в середине ХХ века благодаря запущенной в 1956 году станции по мониторингу за содержанием углекислого газа в атмосфере на Мауна-Лоа (Гавайи), основанной под руководством Чарльза Дэвида Килинга.
Поскольку СО2 — хорошо перемешанный газ, измерения в одной фоновой точке могут дать достаточно точное представление о его глобальной концентрации. Полученные этой станцией данные позволили, например, изучить годовой ход концентрации СО2 и зафиксировать весенний минимум и осенний максимум, связанные с дыханием/фотосинтезом бореальных лесов.
Но главное — многолетние измерения, проводимые по одной и той же методике, выявили серьезный рост концентрации углекислого газа с течением времени: начиная с 315 частей на миллион в 1958 году и заканчивая 415 частями в 2019-м (начавшиеся позже наблюдения на других станциях подтвердили эту тенденцию).
Дополненные впоследствие данными о составе воздухе, полученными на основе анализа пузырьков воздуха из ледниковых кернов Антарктиды, эти измерения позволили установить, что за прошедший миллион лет концентрация СО2 в атмосфере Земли никогда еще не была такой высокой.
Следующий шаг, сделанный наукой, — выяснение причин наблюдаемого роста СО2. В середине 1950-х годов Ханс Зюсс открыл изменение изотопного состава углекислого газа, а именно — изменение во времени соотношения изотопов 12С, 13С и 14С.
Дело в том, что деревья в процессе фотосинтеза «предпочитают»фиксировать более легкий изотоп углерода — 12С. Поэтому в ископаемом топливе 13С и 14С содержатся в меньших пропорциях, чем в остальных оболочках климатической системы, — особенно 14С, содержание которого в ископаемом топливе близко к нулю (время полураспада 14С составляет 5700 лет).
Так называемый «эффект Зюсса» состоит в уменьшении соотношения 14С/12С, которое было отмечено для первой половины ХХ века. Правда, испытания ядерного оружия в 1960-х годах привело к резкому повышению содержания 14С в атмосфере (в обычных условиях этот изотоп образуется в верхних слоях атмосферы под действием космических лучей), что сделало невозможным дальнейшее использование этого соотношения.
Сейчас ученые смотрят на соотношение 13С/12С в углекислом газе атмосферы и фиксируют уменьшение величины этого соотношения, уверенно связывая это со сжиганием ископаемого топлива.
Кроме того, сегодня с помощью различных методов (камерные методы, методы турбулентных пульсаций, спутниковые наблюдения и так далее) получены достаточно точные оценки по содержанию углерода в различных оболочках климатической системы, а также оценки потоков углерода между этими оболочками.
Получены и оценки антропогенных потоков углерода от различных отраслей (промышленности, энергетики, сельского хозяйства и других). Все это позволило оценить параметры углеродного циклаклиматической системы и также связать скорость роста углекислого газа с антропогенными эмиссиями.
Б. Влияние усиления парникового эффекта на измеряемые величины в климатической системе
Еще в конце XIX века Сванте Аррениус с помощью упрощенной климатической модели впервые оценил возможные изменения глобальной температуры вследствие гипотетического удвоения концентрации СО2. От возможного к реальному сделал шаг Гай Каллендар, который в 1938 году впервые предположил, что на Земле уже происходит потепление климата, связанное с антропогенными выбросами углекислого газа.
В 1950-х годах Гилберт Пласс впервые использовал компьютер для расчетов с моделью радиационного переноса и получил оценкучувствительности температуры воздуха к удвоению СО2 около 3,5 градуса Цельсия.
В 1970-х годах Михаил Будыко, применяя в климатологии понятие обратной связи, показал, что даже небольшие внешние воздействия могут за счет положительных обратных связей привести к довольно значительным изменениям.
Например, усиление парникового эффекта за счет роста концентрации углекислого газа приводит к росту температуры воздуха, усилению испарения и росту влажности воздуха. Поскольку водяной пар — тоже парниковый газ, рост влажности ведет к дальнейшему усилению потепления.
Наука на данный момент хорошо знает вклад антропогенной деятельности в радиационный баланс — более того, определен вклад разных компонентов человеческой деятельности: вклад от изменения альбедо поверхности, вклад от аэрозолей (прямой и косвенный), вклад от парниковых газов.
Подчеркнем, что это гораздо более существенный вклад, чем влияние на радиационный баланс естественных факторов, отмечавшееся в первых двух тысячелетиях. Например, изменение солнечной активности не превышало по модулю 0,2 ватта на квадратный метр, воздействие от сильных извержений вулканов может достигать 5–10 ваттов на квадратный метр, но оно очень кратковременно (1–2 года).
В целом, наблюдаемые в последние десятилетия изменения в различных оболочках земной климатической системы соответствуют ожидаемым изменениям, обусловленным усилением парникового эффекта.
Растет не только температура воздуха у поверхности, но также температура нижней тропосферы, температура воды в верхних слоях океана, влажность воздуха, уровень океана. Из-за избыточного тепла сокращается площадь морского льда, площадь и масса горных и покровных ледников.
Из-за удерживания тепла в нижних слоях атмосферы верхние слои остывают — похолодание наблюдается в стратосфере и мезосфере. Если бы современное потепление было вызвано увеличением солнечной активности, температура в тропосфере, стратосфере и мезосфере менялась бы однонаправленно.
В. Построение численных моделей климата и воспроизведение климата при учете внешних воздействий
Развитая теория, подтвержденная наблюдениями, требует и еще одного подтверждения — успешными прогнозами.
Сейчас ученые прогнозируют климат с помощью хорошо развитых численных моделей климата (или более правильно — моделей Земной системы), в основе которых лежат гидродинамические модели общей циркуляции атмосферы и океана с подключенными блоками растительности, динамики ледовых щитов, блоками химической трансформации атмосферных примесей и так далее.
Модели способны адекватно воспроизводить климатологию и изменчивость климатических параметров Земли. «Сердце» климатических моделей — модели общей циркуляции атмосферы — доказали свою прогностическую силу в прогнозировании погоды. Единственное, в прогнозе климата, в отличие от прогноза погоды, не учитываются начальные данные, а только граничные.
С климатическими моделями проводятся как эксперименты на чувствительность (например, как изменится климат, если удвоить концентрацию СО2 в атмосфере, или создать аналог аэрозольного экрана в стратосфере, или повысить солнечную активность и так далее), так и эксперименты по воспроизведению реального климата — прошлого или будущего.
При этом для корректного воспроизведения необходимо знать граничные условия: для воспроизведения палеоклимата, например, необходимо задать другие параметры орбиты (так называемые циклы Миланковича), для воспроизведения климата XXI века важен экономический прогноз (как будет меняться концентрация СО2).
Прогресс моделей тесно связан с наращиванием вычислительной мощности компьютеров. Чем более точная берется модель и чем больше процессов воспроизводится в ней явно (а не параметризуется, то есть не записывается в некой упрощенной форме), тем больше требуется вычислительных мощностей для ее реализации.
Сейчас глобальные климатические модели вышли на шаг в 5–10 километров, что позволяет в явной форме воспроизводить конвекцию. Всего в мире насчитываются десятки различных глобальных климатических моделей.
Численные модели — развитый и необходимый инструмент для климатологов. Ведь планета у нас одна, лабораторный эксперимент на ней не поставишь. А вот численный — пожалуйста. Главное, чтобы модель была адекватная.
С помощью моделей получено еще одно важное доказательство определяющей роли человека в современном потеплении: расчеты с учетом только естественной изменчивости не смогли воспроизвести рост температуры, а расчеты с учетом естественной изменчивости и антропогенного воздействия этот рост воспроизводят.
Но это ретроспективный прогноз (hindcast): мы знали, как менялась температура и попробовали ее воспроизвести с подключением тех или иных факторов. А насколько хороши модели в прогнозировании?
Сейчас, спустя три-четыре десятка лет после появления первых прогнозов изменения глобальной температуры вследствие антропогенного усиления парникового эффекта, можно сравнить эти первые прогнозы с наблюдаемым изменением температуры. В целом, спрогнозированный рост температуры оправдывается.
Суммируя, важно отметить, что в основе теории современных изменений климата (да и вообще климатической изменчивости) лежит отнюдь не один график, а совокупность знаний: установленный факт наличия парникового эффекта, сведения о его величине, о концентрации парниковых газов и цикле углерода, документально установленный рост этой концентрации и усиление радиационного форсинга, изотопное доказательство влияния сжигания ископаемого топлива на рост концентрации парниковых газов.
Наблюдаемое изменение различных климатических величин соответствует ожидаемому при усилении парникового эффекта: рост температуры в нижних слоях атмосферы и снижение — в верхних. Численные модели климата воспроизводят современное потепление только с учетом всех факторов (естественных и антропогенных), при этом прогнозы, сделанные более 30 лет назад с помощью этих моделей, оказываются успешными.
Опираясь на изложенную выше научную базу, вооружившись историей вопроса и доказательствами, нетрудно понять, что не хвост виляет собакой (не график температурных изменений диктует подгонку теорий), а собака — хвостом (антропогенное усиление парникового эффекта ведет к изменению множества климатических величин, в том числе и температуры).
Климатологи — не единственные, чьи выводы пытаются объявить продуктом заговора, результатом работы могущественных групп интересов, желающих заработать на опасениях общества. Есть люди, называющие ВИЧ изобретением фармацевтических компаний, есть те, кто считает, что войны и революции начинаются по желанию тайного мирового правительства.
Такие объяснения всегда незамысловаты и, главное, оставляют место для оптимизма: побороть тайных заговорщиков, конечно же, проще, чем бездушные законы физики.
Но физику не обманешь. Глобальное изменение климата происходит на наших глазах, природная среда становится все менее и менее привычной. И экономическая деятельность человечества существенно ускоряет и углубляет эти процессы. К сожалению, это не выдумка климатологов.
Александр Чернокульский