Найти тему
CNC machines - Станки с ЧПУ

Исследование химического состава. Часть 2.

В 1981 г. Артур Шавлов вместе с Николасом Бломбергеном был удостоен половины Нобелевской премии «за вклад в развитие лазерной спектроскопии». Другая половина премии была присуждена Каю Сигбану за близкую по тематике работу в области электронной спектроскопии.

В основе лазерной спектроскопии лежит тот фундаментальный факт, что атомы и молекулы поглощают и испускают электромагнитное излучение на характеристических частотах (энергиях фотонов), соответствующих разностям энергий между их различными энергетическими уровнями. Спектр частот излучения, испускаемых после возбуждения и перехода в более высокие энергетические состояния или предпочтительно поглощаемых из падающего излучения, помогает идентифицировать элементы, устанавливать структуру атомов и молекул и проверять выводы фундаментальной теории вещества и излучения. Создание лазера с перестраиваемой частотой явилось важным достижением, поскольку излучение такого лазера практически монохроматично (что позволяет точно измерять частоту), обладает высокой интенсивностью (что позволяет снимать спектры при относительно малом числе атомов или молекул) и облегчает настройку лазера на желательную частоту.

Во многих типах спектроскопии спектральные линии (узкие полосы частот) подвержены эффекту Доплера. Под эффектом Доплера мы понимаем изменение наблюдаемой частоты при движении источника излучения относительно наблюдателя. Частота возрастает, когда излучатель приближается к наблюдателю, и убывает при удалении от наблюдателя, причем величина повышения или понижения частоты зависит от того, как быстро приближается или удаляется источник. В случае звуковых волн эффект Доплера вызывает хорошо известное повышение или понижение звучания свистка паровоза или гудка автомашины, движущихся мимо наблюдателя. В спектроскопии частоты, испускаемые атомами или молекулами, которые всегда находятся в движении, зависящем от их температуры, сдвигаются в сторону повышения или понижения в зависимости от направления их движения. Поскольку атомы и молекулы движутся в различных направлениях, спектральная линия уширяется.

В случае спектров поглощения «наблюдателем» является атом или молекула, на которые падает излучение «Полученная» частота выше или ниже, чем частота внешнего источника, в зависимости от того, движется ли атом или молекула к источнику или от источника. Спектральные «линии» в действительности представляют собой пики со спадающими краями. Из-за уширения линий два близко расположенных пика могут перекрываться, и небольшой пик может оказаться трудноразличимым на фоне более крупного соседа и поэтому остаться незамеченным.

Лазерный анализатор Z серии основан на методе лазерной эмиссионной спектрометрии (LIBS, ЛИЭС)

Лазерный анализатор
Лазерный анализатор

Лазерно-искровая эмиссионная спектрометрия (ЛИЭС) — один из методов атомно-эмиссионного спектрального анализа, в котором используют спектры плазмы лазерного пробоя (лазерной искры) для анализа твёрдых образцов, жидкостей, газовых сред, взвешенной пыли и аэрозолей.

Лазерный пробой формируют при фокусировке импульсного лазерного излучения на поверхности образца (или в объёме газа — например, в воздухе). Процесс создания плазмы путём лазерного облучения поверхности образца называют лазерной абляцией.

В настоящее время ЛИЭС бурно развивается в связи с возможностью создания универсальных эмиссионных анализаторов, способных анализировать любые типы образцов (включая микроскопические) на все элементы сразу, с отличным пространственным разрешением по поверхности, причем бесконтактно, не касаясь самих образцов (удалённых объектов), без какой-либо пробоподготовки (в случае гомогенного химического состава материала), работающих в реальном времени в компактном переносном варианте.

В лазерной искре формируется весьма горячая плазма (до 40 тыс. кельвин при концентрации электронов до ~1018 см−3). При этом плазма факела, экстрагируемого из совершенно разных образцов, часто обладает схожими характеристиками.

Использование фемтосекундных лазерных импульсов (короче 1000 фс) предельно упрощает процесс мгновенного испарения и ионизации вещества без влияния теплопередачи по объёму образца и экранирования лазерного излучения плазмой факела, формирование которой происходит уже после окончания лазерного импульса. Эти факторы улучшают воспроизводимость анализа.

Применение ультрафиолетовых лазеров позволяет обеспечить лучшую эффективность и воспроизводимость лазерной абляции и, следовательно, более высокую точность анализа, чем это достижимо при помощи менее сложных и более распространённых инфракрасных лазеров.

В практических приложениях наибольшие сложности вызывают проблемы градуировки и не впечатляющие пределы определения (около 10−3 % с относительной погрешностью 5—10 %). Во многих случаях градуировка остается лишь приблизительной. В случаях анализа материалов, представляющих неоднородные смеси веществ (например руд и металлургических шихт), необходима трудоёмкая пробоподготовка образцов.

SciAps Z — портативный лазерный анализатор, способный определять любой элемент периодической таблицы, в различных материалах. Может анализировать элементы на более низком уровне концентраций, определить марку и количественный состав сплава на любой основе или узнать геохимию горной породы. SciAps Z обладает высокой скоростью работы, шире диапазон элементов H — U, суперлегкие С, Li, Be, B, Na, высокая точность и пределы обнаружения Mg, Al, Si. Лазерный Z позволяет анализировать химические элементы от H (Водорода) до U (Урана) в металлах, порошках, почвах, горно-геологических пробах и даже в жидкостях. Лазерный анализатор Z серии основан на методе лазерной эмиссионной спектрометрии (LIBS, ЛИЭС), использует уникальный импульсный лазер высокой мощности, что в сочетании с запатентованной системой обдува аргоном OPTi-PurgeTM, позволяет измерять легкие элементы на высоком уровне.

Наука
7 млн интересуются