До недавнего времени я считал что увеличение скорости передачи данных в мобильных сетях достигается только лишь усилением сигнала и шириной канала несущей частоты базовой станции, но…. я очень ошибался.
Давайте разбираться какие нововведения происходят в мире беспроводных сетей 4 поколения и не только.
Для начала и для многих наших подписчиков будет полезным узнать, что структура вышек сотовых операторов это не только аббревиатура 3G или 4G , это сложное скопление технологий разного порядка, так что же скрывается за этим маркетинговым названием? А вот что:
Идея беспроводной мобильной связи зародилась в головах ученых еще в начале 20-го века. Работы по созданию системы радиотелефонной связи активно велись и в западных странах и в Советском Союзе, однако первая рабочая модель сотового телефона появилась в лишь в 1973 году, когда американская компания Motorola представила миру DynaTac — первый прототип портативного сотового телефона.
Сегодня жизнь человека практически невозможно представить без мобильных устройств, использующих технологии беспроводной связи. За последние 35 лет сменилось 4 поколения сотовой связи, и на смену четвертому приходит пятое поколение, внедрение которого ожидается к 2020 году. Об истории развития сотовой связи, поколениях и применяемых технологиях пойдет речь в данной статье.
Третье поколение — 3G
Работы по созданию технологий третьего поколения начались в 1990-х годах, а внедрение состоялось только в начале 2000-х (в 2002 году в России). Разработанные к тому времени стандарты основывались на технологии CDMA (Code Division Multiple Access — множественный доступ с кодовым разделением).
Третье поколение мобильной связи включает 5 стандартов: UMTS/WCDMA, CDMA2000/IMT-MC, TD-CDMA/TD-SCDMA, DECT и UWC-136. Наиболее распространенными из них являются стандарты UMTS/WCDMA и CDMA2000/IMT-MC. В России популярность получил стандарт UMTS/WCDMA. Далее предлагаем остановиться на основных технологиях 3G:
UMTS
UMTS (Universal Mobile Telecommunications System – универсальная система мобильной электросвязи) – технология сотовой связи разработанная для внедрения 3G в Европе. Используемый диапазон частот 2110-2200 МГц. (зачастую ширина канала 5 МГц). Скорость передачи данных в режиме UMTS составляет не более 2 Мбит/с (для неподвижного абонента), а при движении абонента, в зависимости от скорости движения, может опуститься до 144 Кбит/с.
HSDPA
HSDPA (High-Speed Downlink Packet Access — высокоскоростная пакетная передача данных от базовой станции к мобильному телефону) – первый из семейства протоколов сотовой связи HSPA (High Speed Packet Access — высокоскоростная пакетная передача данных), основанный на UMTS технологии. Данный протокол и последующие его версии позволили значительно увеличить скорость передачи данных в сетях 3G. В первой своей реализации протокол HSDPA имел максимальную скорость передачи данных 1,2 Мбит/с. Скорость передачи данных в следующей реализации протокола HSDPA составляла уже 3,6 Мбит/с. На этот момент 3G модемы получили большую популярность и у большинства пользователей были модемы поддерживающие именно этот стандарт, наиболее популярные модель Huawei E1550, ZTE mf180 (такие экземпляры встречаются до сих пор). В результате дальнейшего развития протокола HSDPA удалось увеличить скорость сначала до 7,2 Мбит/с (наиболее популяные модемы Huawei E173, ZTE MF112), а затем до 14,4 Мбит/с. (Huawei E1820, ZTE MF658) Вершиной технологии HSDPA стала технология DC-HSDPA скорость которой могла достигать 28.8 Мбит/с. DC-HSDPA по сути двухканальный вариант HSDPA.
HSPA+
HSPA+ – технология, базирующаяся на HSDPA, в которой реализованы более сложные методы модуляции сигнала (16QAM, 64QAM) и технология MIMO (Multiple Input Multiple Output – множественный вход множественный выход). Максимальная скорость 3G может достигать 21 Мбит/с. Подобную технологию уже относят к 3,5G.
DC-HSPA+
DC-HSPA+ технология с самым быстрым 3G Интернетом 42,2 Мбит/с. По сути это двухканальный HSPA+ с шириной канала 10 МГц. Часто это технологию называют 3.75G.
Все устройства, поддерживающие режим работы в сетях третьего поколения, поддерживают также стандарты предыдущих поколений. К примеру, уже устаревший на сегодняшний день USB-модем Huawei E173 для сетей 2G/3G поддерживает стандарты GSM, GPRS, EDGE (до 236,8 Кбит/c), UMTS (до 384 Кбит/c), HSDPA (до 7,2 Мбит/с), т.е. стандарты сетей как второго так и третьего поколений. Максимальная скорость с которой может работать данное устройство равна 7,2 Мбит/с. Более «продвинутая» модель Huawei E3131 для сетей 2G/3G поддерживает набор стандартов, включающий кроме вышеперечисленных еще и HSPA+. Максимальная достижимая скорость загрузки данных на этом устройстве значительно больше и составляет 21 Мбит/сек. Но следует учесть, что максимальная теоретическая и реальная скорости отличаются довольно сильно.Например на модемах huawei E1550, zte mf180, где максимальная скорость 3.6 Мбит/с, на практике можно добиться скорости 1-2 Мит/с, на модемах Huawei E173, ZTE MF112 (максимальная скорость 7,2 Мбит/с) на практике 2-3,5 Мбит/с, это при условии хорошего уровня сигнала и низкой загруженности вышки мобильного оператора. Одним из факторов повышения скорости 3G Интернета является использования модема поддерживающего максимальную скорость 3G. Мы рекомендуем модем Huawei E3372, он не только поддерживает максимальную скорость 3G Интернета (до 42,2 Мбит/с), но и 4G (до 150 Мбит/с). Кто то может возразить и сказать что в его «дыре» 4G не будет никогда, однако не забывайте, что несколько лет назад вы и о 3G не мечтали. Технологии не стоят на месте!
Четвертое поколение — 4G
На смену еще не исчерпавшему свои возможности 3G приходят новые технологии, технологии четвертого поколения (4G), в большей степени отвечающие запросам времени. Технологии поколения 4G обозначили совершенно новые требования к качеству сигнала связи и его стабильности.
Детищем совместных исследований компаний Hewlett-Packard и NTT DoCoMo в области разработки технологий передачи данных в беспроводных сетях четвертого поколения стали стандарты LTE и WiMax.
• Стандарт LTE (Long-Term Evolution — долговременное развитие) по сути является продолжением развития стандартов GSM/UMTS и первоначально не относился к четвёртому поколению мобильной связи. На сегодняшний день именно LTE является основным стандартом сетей четвертого поколения (4G). Впервые представленный вышеупомянутой компанией NTT DoCoMo, крупнейшим в мире японским оператором сотовой связи, стандарт LTE, в десятом его релизе LTE Advanced, был избран Международным союзом электросвязи в качестве стандарта, отвечающего требованиям беспроводной связи четвертого поколения. Первая коммерческая реализация LTE-сети была осуществлена в 2009 году в Швеции и Норвегии.
Максимальная теоретическая скорость передачи данных в LTE-сетях составляет 326.4 Мбит/с. На практике скорость передачи данных существенно зависит от используемой оператором ширины диапазона частот. Наибольшую ширину диапазона частот на сегодняшний день имеет сотовый оператор Мегафон (40 МГц), что является серьезным преимуществом перед другими отечественными операторами сотовой связи, которые используют ширину 10 МГц. Максимальная скорость передачи данных в LTE-сети при ширине диапазона 10 МГЦ равна 75 Мбит/с. Ну а предельная скорость передачи данных при использовании ширины диапазона 40 МГц может достигать 300 Мбит/с.
Но это и так общеизвестные факты, попробуем разобраться дальше, когда впервые я увидел скорость на мобильном интернете в 185 мб/c. для меня многое стало понятно…
Всё дело в том, что моё устройство имеет поддержку Cat. 12 и соответственно способно к объединению разных несущих частотных диапазонов!
На этом попробую заострить ваше внимание!
Скорость мобильного интернета зависит как от оператора связи, так и от вашего устройства. Когда при описании сети оператора используются термины 4G+ или LTE-Advance, то речь идет о том, что на сети поддерживается технология агрегации несущих, она-то и обеспечивает более высокие скорости мобильного интернета. Что это такое, как это уже реализовано на сетях российских операторов мобильной связи.
Для понимания принципа работы этой технологии давайте представим автомобильную дорогу. Очевидно, что пропускная способность дороги с двумя полосами движения выше чем у дороги с одной полосой. А трасса с тремя или даже четырьмя полосами позволяет пропустить еще большее количество разных автомобилей, двигающихся с различными скоростями.
Аналогично дорогам, в сотовой связи имеются несущие – радио частоты на которых передается полезная информация. Если агрегировать (объединить) несущие для передачи данных, то можно получить большую пропускную способность сети, а значит и скорость мобильного интернета конкретного абонента.
В России для сетей 4-го поколения на сегодня используются пять частотных диапазонов:
Диапазон частот B1-2100 МГц; B3-1800 МГц; B7-2600 МГц; B20-800 МГц; B38-2600 МГц
Агрегация частот может объединять пропускную способность как двух диапазонов одного стандарта (бенда), так и нескольких. К примеру, в Москве оператор Мегафон позволяет как объединить два «коридора» в рамках LTE Band 7, так и агрегировать сигнал Band 7 с Band 3. Это открывает перед провайдерами (и пользователями) возможность гибкого использования радиочастотного спектра, вне зависимости от специфики сети в конкретном городе.
Объединять можно не только подсети разных бендов, а и разных стандартов разделения. Технология доступна даже для одновременного подключения к FDD-подсети (частотное разделение каналов) Band 3 и TDD-подсети Band 38, использующей временное разделение каналов для приема и передачи сигнала. Правда, так могут не все устройства.
Агрегацию каналов поддерживают все современные смартфоны, оснащенные модемами LTE категорий 6+. Устройства с LTE Cat. 4 и ниже объединять несущие не способны, им высокоскоростной интернет доступен только в одноканальном режиме. Узнать, какой категории соответствует смартфон, можно из описания.
У Samsung поддержку объединения каналов LTE имеет большинство моделей, кроме самых бюджетных и простых (вроде Galaxy J4 Core), которые оборудованы модемом Cat. 4. Такая же ситуация и у Xiaomi, среди смартфонов которой только ультрабюджетники вроде Redmi Go или 5A лишены этой функциональности.
У Huawei агрегация частот зависит от чипсета. Бюджетники на простых чипах, вроде МТ6739 или SD425, оснащаются модемами LTE Cat. 4, в то время как устройства со среднеуровневыми и флагманскими SoC поновее умеют объединять диапазоны.
Ремарка автора, таблица приведённая ниже может быть не точной на 100% из-за отсутствия полноты картины и тестов.
От категории модема LTE зависит, как именно он умеет объединять каналы. Cat. 6 может одновременно использовать 2 канала шириной до 20 Мгц каждый, чтобы выдавать скорости до 300 Мбит/с. Cat. 9 может использовать уже 3 «коридора» такой же ширины, увеличивая максимальную скорость до 450 Мбит/с. Модемы категории 12 поднимают планку до 600 Мбит/с.
LTE Cat. 16 поддерживает объединение до 4 каналов в режиме MIMO, выдавая до гигабита в секунду. Самые современные (начало 2019) модемы LTE, соответствующие Cat. 20 и выше, уже приблизились к отметке 2 Гбит/с. Они способны объединять одновременно до 7 каналов.
Помимо категории модема LTE, важна также сетевая инфраструктура конкретного оператора. Даже если ваш флагман Huawei или Xiaomi оснащен модемом Cat. 20, агрегация частот может не работать, если у оператора мало вышек/перегруженные сети/узкий диапазон/не все его бенды поддерживаются смартфоном.
Плюсы и минусы агрегации частот
Преимуществом агрегации частот является повышение скорости, например, Huawei в своем флагмане Mate 20 Pro обещает до 1,4 Гбит/с, а Samsung в новом Galaxy S10 – аж до 2 Гбит/с. Формально, такие скорости соответствуют пятому поколению связи (5G), поэтому компании часто используют термин 4,75G. Я думаю, нет смысла расписывать, что хорошего в повышении скорости интернет-соединения, ибо это очевидно.
Недостатком технологии является ее слабая приспособленность к реальным условиям эксплуатации. Немногие операторы могут похвастать большим запасом используемых диапазонов. Обычно, из-за конкуренции, каждому из них достается относительно узкая полоска в пару-тройку десятков МГц. А если в нее помещается всего два канала – то, будь у вас в смартфоне хоть LTE Cat. 21, больше 300 Мбит/с не выйдет выжать даже в теории.
Объединение нескольких бендов могло бы решить проблему малой ширины диапазонов у конкретного оператора, но и оно часто бесполезно. Ведь провайдеры экономно используют частотный ресурс и нечасто устанавливают параллельно приемопередатчики разных подсетей на одной вышке.
Как правило, низкочастотный Band 20 (800 МГц) используется в малонаселенной местности, а Band 7 (2,6 ГГц) – в центрах городов и местах большого скопления людей. Такого, чтобы они были рядом, нужно еще поискать. Поэтому, даже если смартфон может и хочет объединить каналы – он попросту не найдет подходящего варианта в зоне досягаемости. А если и найдет – сигнал будет слабым, прирост скорости мизерным.
Агрегация частот LTE – это очень хорошая технология, позволяющая повысить скорость интернет-подключения. Но ее проблема в том, что к практическому применению она доступна лишь в идеализированных условиях, особенно, если речь о гигабитных скоростях. Производитель вполне может добиться таковых, чтобы показать график с красивыми цифрами на презентации, но наш мир не идеален, и операторы – не исключение. Поэтому практическая ценность и применимость технологии гораздо ниже той, что могла бы быть в теории.
Что же в заключение:
Мы со своей стороны в качестве улучшения скоростных показателей у абонента, начиная с 2019 года, в 90% случаев стали использовать MiMo антенны с поддержкой MIMO 2х2, в этих антеннах присутствует функция диплексеров, эту функцию выполняют сами широкополосные излучатели антенны, т.к. каждый из них принимает соответствующим образом поляризованные сигналы из диапазонов 790÷960/1700÷2700 МГц одновременно. Наши антенны состоят из двух широкополосных облучателей, разнесенных на определенное расстояние и ориентированных так, что их векторы поляризации ортогональны. Осталось перейти на использование устройств категорий Cat.6, Cat.9.
Удачи вам и совет, не экономьте на оборудовании и профессионалах знающих и любящих своё дело!
Если вы захотите получить качественно услугу подключения к интернет в любом месте или установить видеонаблюдение с удалённым доступом, не важно кто вы, юридическое лицо или частное, наши координаты:
Компания "ТехноМодем"
www.lte-nnov.ru
www.vk.com/texnomodem
Наш адрес: Нижегородская область, г. Арзамас ул. Карла Маркса д. 59 оф. 113 т. +7 987 550 13 00
P.S. Материал для этой статьи собирал со страниц интернет, с использованием собственного материала.