Найти в Дзене
Знание сила

Закон сохранения массы

Закон сохранения массы — закон физики, согласно которому масса физической системы сохраняется при всех природных и искусственных процессах.

В метафизической форме, согласно которой вещество несотворимо и неуничтожимо, этот закон известен с древнейших времён. Позднее появилась количественная формулировка, согласно которой мерой количества вещества является вес (с конца XVII века — масса).

С точки зрения классической механики и химии, сохраняются общая масса закрытой физической системы, равная сумме масс компонентов этой системы (то есть масса считается аддитивной). Этот закон с большой точностью верен в области применимости ньютоновской механики и химии, так как релятивистские поправки в этих случаях пренебрежимо малы.

В современной физике концепция и свойства массы существенно пересмотрены. Масса более не является мерой количества вещества, а закон сохранения массы тесно связан с законом сохранения внутренней энергии системы. В отличие от классической модели, сохраняется масса только изолированной физической системы, то есть при отсутствии энергообмена с внешней средой. Не сохраняется сумма масс компонентов системы (масса неаддитивна). Например, при радиоактивном распаде в изолированной системе, состоящей из вещества и радиации, совокупная масса вещества уменьшается, но масса системы сохраняется, несмотря на то что масса радиации может быть нулевая.

Более детально[править | править код]

Чтобы более детально пояснить, почему масса в современной физике оказывается неаддитивной[16] (масса системы не равна — вообще говоря — сумме масс компонент), следует вначале заметить, что под термином масса в современной физике понимается лоренц-инвариантная величина:

{\displaystyle m={\sqrt {E^{2}/c^{4}-p^{2}/c^{2}}},} {\displaystyle m={\sqrt {E^{2}/c^{4}-p^{2}/c^{2}}},}

где {\displaystyle E} E — энергия, {\displaystyle {\vec {p}}} {\vec p} — импульс, {\displaystyle c} c — скорость света. И сразу заметим, что это выражение одинаково легко применимо к точечной бесструктурной («элементарной») частице, так и к любой физической системе, причём в последнем случае энергия и импульс системы вычисляются просто суммированием энергий и импульсов компонент системы (энергия и импульс — аддитивны).

Можно попутно заметить также, что вектор импульса-энергии системы — это 4-вектор, то есть его компоненты преобразуются при переходе к другой системе отсчета в соответствии с преобразованиями Лоренца, поскольку так преобразуются его слагаемые — 4-векторы энергии-импульса составляющих систему частиц. А поскольку масса, определённая выше, есть длина этого вектора в Лоренцевой метрике, то она оказывается инвариантной (лоренц-инвариантной), то есть не зависит от системы отсчёта, в которой её измеряют или рассчитывают.

Кроме того, заметим, что {\displaystyle c} c — универсальная константа, то есть просто число, которое не меняется никогда, поэтому в принципе можно выбрать такую систему единиц измерения, чтобы выполнялось {\displaystyle c=1} {\displaystyle c=1}, и тогда упомянутая формула будет менее загромождена:

{\displaystyle m={\sqrt {E^{2}-p^{2}}},} {\displaystyle m={\sqrt {E^{2}-p^{2}}},}

как и остальные связанные с нею формулы (и мы ниже будем для краткости использовать именно такую систему единиц).

Рассмотрев уже самый парадоксальный на вид случай нарушения аддитивности массы — случай, когда система нескольких (для простоты ограничимся двумя) безмассовых частиц (например фотонов) может иметь ненулевую массу, легко увидеть механизм, порождающий неаддитивность массы.

Пусть есть два фотона 1 и 2 с противоположными импульсами: {\displaystyle {\vec {p}}_{1}=-{\vec {p}}_{2}} {\displaystyle {\vec {p}}_{1}=-{\vec {p}}_{2}}. Масса каждого фотона равна нулю, следовательно можно записать:

{\displaystyle 0={\sqrt {E_{1}^{2}-p_{1}^{2}}},} {\displaystyle 0={\sqrt {E_{1}^{2}-p_{1}^{2}}},}

{\displaystyle 0={\sqrt {E_{2}^{2}-p_{2}^{2}}},} {\displaystyle 0={\sqrt {E_{2}^{2}-p_{2}^{2}}},}

то есть энергия каждого фотона равна модулю его импульса. Заметим попутно, что масса равна нулю за счет вычитания под знаком корня ненулевых величин друг из друга.

Рассмотрим теперь систему этих двух фотонов как целое, посчитав её импульс и энергию. Как видим, импульс этой системы равен нулю (импульсы фотонов, сложившись, уничтожились, так как эти фотоны летят в противоположных направлениях)[17]:

{\displaystyle {\vec {p}}={\vec {p}}_{1}+{\vec {p}}_{2}={\vec {0}}.} {\displaystyle {\vec {p}}={\vec {p}}_{1}+{\vec {p}}_{2}={\vec {0}}.}.

Энергия же нашей физической системы будет просто суммой энергий первого и второго фотона:

{\displaystyle E=E_{1}+E_{2}.} {\displaystyle E=E_{1}+E_{2}.}

Ну и отсюда масса системы:

{\displaystyle m={\sqrt {E^{2}-p^{2}}}={\sqrt {E^{2}-0}}=E\neq 0,} {\displaystyle m={\sqrt {E^{2}-p^{2}}}={\sqrt {E^{2}-0}}=E\neq 0,}

(импульсы уничтожились, а энергии сложились — они не могут быть разного знака).

В общем случае всё происходит аналогично этому, наиболее отчётливому и простому примеру. Вообще говоря, частицы, образующие систему, не обязательно должны иметь нулевые массы, достаточно, чтобы массы были малы или хотя бы сравнимы с энергиями или импульсами[18], и эффект будет большим или заметным. Также видно, что точной аддитивности массы нет практически никогда, за исключением лишь достаточно специальных случаев.

Масса и инертность[править | править код]

Отсутствие аддитивности массы, казалось бы, вносит затруднения. Однако они искупаются не только тем, что определённая так (а не иначе, например, не как энергия деленная на квадрат скорости света) масса оказывается лоренц-инвариантной, удобной и формально красивой величиной, но и имеет физический смысл, точно соответствующий обычному классическому пониманию массы как меры инертности.

А именно для системы отсчёта покоя физической системы (то есть той системы отсчета, в которой импульс физической системы ноль) или систем отсчёта, в которых система покоя медленно (по сравнению со скоростью света) движется, упомянутое выше определение массы

{\displaystyle m={\sqrt {E^{2}/c^{4}-p^{2}/c^{2}}}} {\displaystyle m={\sqrt {E^{2}/c^{4}-p^{2}/c^{2}}}}

— полностью соответствует классической ньютоновской массе (входит во второй закон Ньютона).

Это можно конкретно проиллюстрировать, рассмотрев систему, снаружи (для внешних взаимодействий) являющейся обычным твердым телом, а внутри содержащую быстро движущиеся частицы. Например, рассмотрев зеркальный ящик с идеально отражающими стенками, внутри которого — фотоны (электромагнитные волны).

Пусть для простоты и большей четкости эффекта сам ящик (почти) невесом. Тогда, если, как в рассмотренном в параграфе выше примере, суммарный импульс фотонов внутри ящика ноль, то ящик будет в целом неподвижен. При этом он должен под действием внешних сил (например если мы станем его толкать), вести себя как тело с массой, равной суммарной энергии фотонов внутри, деленной на {\displaystyle c^{2}} c^{2}.

Рассмотрим это качественно. Пусть мы толкаем ящик, и он приобрел из-за этого некоторую скорость вправо. Будем для простоты сейчас говорить только об электромагнитных волнах, бегущих строго вправо и влево. Электромагнитная волна, отражающаяся от левой стенки, повысит свою частоту (вследствие эффекта Доплера) и энергию. Волна, отражающаяся от правой стенки, напротив, уменьшит при отражении свои частоту и энергию, однако суммарная энергия увеличится, так как полной компенсации не будет. В итоге тело приобретет кинетическую энергию, равную {\displaystyle mv^{2}/2} mv^{2}/2 (если {\displaystyle v<<c} {\displaystyle v<<c}), что означает, что ящик ведет себя как классическое тело массы {\displaystyle m} m. Тот же результат можно (и даже легче) получить для отражения (отскока) от стенок быстрых релятивистских дискретных частиц (для нерелятивистских тоже, но в этом случае масса просто окажется[19] суммой масс частиц, находящихся в ящике).