Найти в Дзене
Физик-шизик

Заземление

В предыдущей публикации я обещал рассказать про заземление. Итак, сегодня пойдёт речь о том что такое заземление, зачем оно нужно, и какие его виды существуют. Рассматриваются только сети с напряжением до 1000В. Что такое заземление?
Заземление - это преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством. Заземляющее устройство - это совокупность заземлителя и заземляющих проводников. Заземлитель - это проводящая часть или совокупность соединённых между собой проводящих частей, находящихся в электрическом контакте с землёй непосредственно или через промежуточную проводящую среду. Зачем нужно заземление?
В первую очередь заземление используется для защиты человека от поражения электрическим током. В данном случае, при утечке тока с фазного проводника на корпус заземлённого электроприбора, ток начинает течь по цепи фаза-заземление, что в свою очередь может привести к следующим событиям:
1. Срабатывание автоматиче

В предыдущей публикации я обещал рассказать про заземление. Итак, сегодня пойдёт речь о том что такое заземление, зачем оно нужно, и какие его виды существуют. Рассматриваются только сети с напряжением до 1000В.

Что такое заземление?
Заземление - это преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством.

Заземляющее устройство - это совокупность заземлителя и заземляющих проводников.

Заземлитель - это проводящая часть или совокупность соединённых между собой проводящих частей, находящихся в электрическом контакте с землёй непосредственно или через промежуточную проводящую среду.

Зачем нужно заземление?
В первую очередь заземление используется для защиты человека от поражения электрическим током. В данном случае, при утечке тока с фазного проводника на корпус заземлённого электроприбора, ток начинает течь по цепи фаза-заземление, что в свою очередь может привести к следующим событиям:
1. Срабатывание автоматического выключателя;
2. Срабатывание устройства защитного отключения, если таковое используется;
3. Снижение напряжения прикосновения

Существует 2 варианта срабатывания автоматического выключателя:
1. Срабатывание электромагнитного расцепителя;
2. Срабатывание теплового расцепителя.

Известно, что электромагнитный расцепитель предназначен для защиты сети от токов короткого замыкания. Но здесь не всё так просто, ведь ток короткого замыкания так-же имеет конечную величину. А в автоматических выключателях током короткого замыкания является ток, в 3 и более раз превосходит номинальный ток автоматического выключателя.
Из этого следует, что для срабатывания электромагнитного расцепителя заземление должно обладать следующими характеристиками:
1. Минимальное сопротивление заземляющих проводников. Следовательно провод заземления должен иметь большую площадь поперечного сечения и минимальную длину, а также минимальное удельное сопротивление.
2. Минимум соединений
3. Минимальное сопротивление заземляющего устройства
Всё это обусловлено одной простой истиной:
чем больше сопротивление цепи, тем меньше ток короткого замыкания в этой цепи.
Если ток, протекающий по цепи будет меньше уставки срабатывания электромагнитного расцепителя произойдёт срабатывание теплового расцепителя, но здесь следует иметь ввиду тот факт, что тепловой расцепитель может в течении длительного времени выдерживать токи в 1,3 раза превышающие номинальный ток автоматического выключателя.
Совокупность этих факторов влияет на выбор номинального тока автоматического выключателя.

Срабатывание устройства защитного отключения (УЗО) происходит в следствии возникновения утечки тока на проводник, не проходящий через УЗО.

Снижение напряжения прикосновения происходит за счёт утечки тока на землю, при этом значение напряжения прикосновения зависит от сопротивления цепи и тока утечки, протекающего в этой цепи. Это также обуславливает требования к заземлению, указанные выше.

Виды заземления (системы заземления)

Классификация типов систем заземления приводится в качестве основной из характеристик питающей электрической сети. ГОСТ Р 50571.2-94 «Электроустановки зданий. Часть 3. Основные характеристики» регламентирует следующие системы заземления: TN-C, TN-S, TN-C-S, TT, IT.

Для электроустановок напряжением до 1 кВ приняты следующие обозначения:

  • система TN — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземлённой нейтрали источника посредством нулевых защитных проводников;
  • система TN-С — система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всём её протяжении;
  • система TN-S — система TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всём её протяжении;
  • система TN-C-S — система TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то её части, начиная от источника питания;
  • система IT — система, в которой нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части электроустановки заземлены;
  • система ТТ — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземлённой нейтрали источника.

Первая буква — состояние нейтрали источника питания относительно земли

  • Т — заземлённая нейтраль (лат. terra);
  • I — изолированная нейтраль (англ. isolation).

Вторая буква — состояние открытых проводящих частей относительно земли

  • Т — открытые проводящие части заземлены, независимо от отношения к земле нейтрали источника питания или какой-либо точки питающей сети;
  • N — открытые проводящие части присоединены к глухозаземлённой нейтрали источника питания.

Последующие (после N) буквы — совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников

  • S — нулевой рабочий (N) и нулевой защитный (PE) проводники разделены (англ. separated);
  • С — функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике (PEN-проводник) (англ. combined);
  • N — нулевой рабочий (нейтральный) проводник; (англ. neutral)
  • PE — защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов)(англ. Protective Earth)
  • PEN — совмещённый нулевой защитный и нулевой рабочий проводники (англ. Protective Earth and Neutral).

Наибольшее распространение в России имеет система TN-C-S.
А вот тут то и кроется ещё одна функция заземления - снижение влияния перекоса фаз. Но как?

Дело в том, что в системах TN, TN-C, TN-S и TN-C-S нейтраль источника питания, то есть ноль, имеет непосредственное соединение с землёй. А земля, как известно, имеет нулевой потенциал. Отсюда следует, что при появлении напряжения на нулевом проводнике, что как раз происходит при перекосе фаз, в цепи заземления возникнет ток, а напряжение на нулевом проводнике, измеренное относительно земли, будет прямо пропорционально сопротивлению заземления.

Система TN-C-S

В системе TN-C-S трансформаторная подстанция имеет непосредственную связь токопроводящих частей с землёй и наглухо заземлённую нейтраль. Для обеспечения связи на участке трансформаторная подстанция — ввод в здание применяется совмещённый нулевой рабочий (N) и защитный проводник (PE), принимающий обозначение PEN. При вводе в здание он (PEN) разделяется на отдельный нулевой (N) и защитный проводник (PE).

  • Также можно наблюдать систему TN-C-S, где разделение нулей происходит в середине линии, однако, в случае обрыва нулевого провода до точки разделения, корпуса окажутся под линейным напряжением, что будет представлять угрозу для жизни при касании.
  • Достоинства: более простое устройство молниезащиты (невозможно появление пика напряжения между PE и N), возможность защиты от КЗ фазы на корпус прибора с помощью обыкновенных «автоматов».
  • Недостатки: крайне слабая защищённость от «отгорания нуля», то есть разрушения PEN по пути от КТП к точке разделения. В этом случае на шине PE со стороны потребителя появляется фазное напряжение, которое не может быть отключено никакой автоматикой (PE не подлежит отключению). Если внутри здания защитой от этого служит система уравнивания потенциалов (СУП) (под напряжением оказывается всё металлическое, и нет риска поражения током при прикосновении к 2 разным предметам), то на открытом воздухе никакой защиты от этого не существует вовсе.

В соответствии с ПУЭ является основной и рекомендуемой системой, но при этом ПУЭ требуют соблюдения ряда мер по недопущению разрушения PEN — механическую защиту PEN, а также повторных заземлений PEN воздушной линии по столбам через какое-то расстояние (не более 200 метров для районов с числом грозовых часов в году до 40, 100 метров для районов с числом грозовых часов в году более 40).

В случае, когда эти меры соблюсти невозможно, ПУЭ рекомендуют TT. Также ТТрекомендуется для всех установок под открытым небом (сараи, веранды и т. д.)

В городских зданиях шиной PEN обычно является толстая металлическая рама, вертикально идущая через всё здание. Её практически невозможно разрушить, потому в городских зданиях применяется TN-C-S.

В сельской же местности в России на практике существует огромное количество воздушных линий без механической защиты PEN и повторных заземлений. Потому в сельской местности более популярна система TT.

В позднесоветской городской застройке как правило применялась TN-C-S с точкой деления на основе электрощита (PEN) рядом со счетчиком, при этом PE проводилась только для электроплиты.

В современной российской застройке применяется и «пятипроводка» с точкой деления в подвале, в стояках проходят уже независимые N и PE.

Разделение PEN на РЕ и N проводники, повторное заземление в системе TN-C-S

ИПри разделении PEN-проводника следует руководствоваться следующими правилами: 1. Необходимо обеспечить неразрывность РЕ-проводника 2, PEN-проводник необходимо соединять либо с зажимом заземляющего устройства, либо с шиной РЕ (п. 1.7.135 ПУЭ) 2. Не допускается подключение PEN-проводника к каким либо коммутационным устройствам.

В соответствии с пунктом 1.7.119 ПУЭ внутри вводного устройства в качестве главной заземляющей шины следует использовать шину PE.

Изображение автора. Разделение PEN-проводника.
Изображение автора. Разделение PEN-проводника.

Пока я работал над этой статьёй наткнулся на одну очень грубую ошибку, поэтому я её здесь приведу и разберу.

ТАК ДЕЛАТЬ НЕЛЬЗЯ!!! Изображение из открытых источников.
ТАК ДЕЛАТЬ НЕЛЬЗЯ!!! Изображение из открытых источников.

Во-первых необходимо обеспечить неразрывность РЕ-проводника
Во-вторых при внутри ВРУ в качестве ГЗШ должна использоваться шина РЕ
В-третьих система уравнивания потенциалов подключается непосредственно к ГЗШ


Моё личное мнение

На мой взгляд, лучше всего соединять PEN-проводник с N-шиной, дабы не создавать ток в ГЗШ. К тому-же, если следовать рекомендациям ПУЭ (п. 1.7.135) возникает угроза отгорания перемычки между шинами РЕ и N, в случае если в качестве перемычки используется провод, а не медная или стальная шина.
Но это моё личное мнение.