Найти в Дзене
DARKSQUAD.RU

Что такое Deep Learning? Как работает глубокое обучение?

Как работает глубокое обучение и что оно из себя представляет? В ходе статьи мы расскажем про Deep Learning и разберемся с его ключевыми понятиями. #1 - Предмет изучения Уже 20 лет существует понятие «глубокое обучение, но совсем недавно о нём начали активно говорить. В рамках этой публикации объясним, что спровоцировало активные разговоры вокруг Deep Learning, что это, в чём отличия от классического машинного обучения и другие полезные нюансы. #2 - Что из себя представляет Глубокая обучаемость относится к одному из видов машинного обучения, в ней используется особая модель, созданная по аналогии с мозгом – в основе используется нейронная связь. Впервые словосочетание было введено в терминологию в 80-х годах, но распространение получило только с 2012 года, прежде не было компьютеров, способных обеспечить достаточную вычислительную мощность. Из-за недостатка производительности модель обучения была в пренебрежении. Популярность приобрела после серии публикаций от известных учёных, ряда
Оглавление

Как работает глубокое обучение и что оно из себя представляет? В ходе статьи мы расскажем про Deep Learning и разберемся с его ключевыми понятиями.

#1 - Предмет изучения

Уже 20 лет существует понятие «глубокое обучение, но совсем недавно о нём начали активно говорить. В рамках этой публикации объясним, что спровоцировало активные разговоры вокруг Deep Learning, что это, в чём отличия от классического машинного обучения и другие полезные нюансы.

#2 - Что из себя представляет

Глубокая обучаемость относится к одному из видов машинного обучения, в ней используется особая модель, созданная по аналогии с мозгом – в основе используется нейронная связь.

Впервые словосочетание было введено в терминологию в 80-х годах, но распространение получило только с 2012 года, прежде не было компьютеров, способных обеспечить достаточную вычислительную мощность. Из-за недостатка производительности модель обучения была в пренебрежении.

Популярность приобрела после серии публикаций от известных учёных, ряда статей из научных журналов и подобного. Когда технологию начали развивать, крупные медиа заинтересовались этой сферой, впервые о Deep Learning заговорили в СМИ The New York Times. В основе был использован материал (научная работа) специалистов университета Торонто: Д. Хинтона, И Сатскевера, А. Крижевского. В основе работы лежали аналитические данные о распознании изображений ImageNet. По их наблюдениям значительным превосходством обладала нейросеть, созданная на основании глубокого обучения. Результативность системы достигла 85%. Это стало началом распространения нейросети и её постоянной победой в конкурсах.

#3 - А что такое машинное обучение?

Является одной из сфер использования искусственного интеллекта, который описывает способы создания и построения алгоритмов. В основе используется собственный опыт программы, то есть специальный алгоритм программистом не закладывается. Человек остаётся безучастным, машина самостоятельно определяет оптимальный способ решения задачи на основании переданных данных.

-2

Для ясности описанного рассмотрим пример: нужно обеспечить распознавание человека на фотографиях, от разработчика требуется предоставить порядка 10 000 картинок с отмеченными чертами человека, тогда программа в будущем сможет сама определять закономерности и выявлять очертания тела.

Для обучения не всегда используется учитель, порой ответы на вопросы машина находит самостоятельно без посторонней помощи. Замечено, что наилучшие результаты наступают при использовании учителя. С каждой обработкой данных система получает опыт и становится точнее.

#4 - Принцип работы глубокого обучения

Его основная задача – воссоздать абстрактное мышление, которым обладает человек, тогда компьютер сможет обобщать параметры. Пример, обученная нейросеть при помощи учителя, плохо понимает рукописный шрифт, который отличается от человека к человеку. Чтобы улучшить результаты, машине придётся предоставить все способы написания, только тогда можно рассчитывать на правильное понимание почерков.

Deep Learning активно применяется во время взаимодействия с многослойными сетями, созданными искусственными путём. Поставленная задача для системы глубокого обучения достигает поставленной цели намного проще.

-3

Сегодня существует 3 основных термина, которые сегодня сосуществуют и обладают приблизительно одним смыслом: Deep Learning, машинное обучение и искусственный интеллект. В действительности это разные понятия, которые являются вытекающими параметрами из других свойств:

  • Искусственный интеллект представляет собой наличие самых разнообразных алгоритмов действий, призванных имитировать человеческое решение поставленных задач. Примером является программа – простая игра в шахматы.
  • Машинное обучение является отраслью использования ИИ, здесь приложение не только решает поставленные задачи, но и записывает себе особенности решения для создания собственного опыта, упрощающего и уточняющего последующие действия. Пример - приложение шахмат изучает поведение соперника и учитывает его для дальнейшего перестроения тактики.
  • Глубокое обучение – это один из способов машинного обучения, в основе которых лежат нейронные сети. Во время игры в шахматы обучается преимущественно нейронная сеть.

#5 - Способ работы глубокого обучения

Проиллюстрируем всё на простом примере: показываем роботу фотографии, где изображены девочки и мальчики. Изначально нейронная сеть обучается лишь распознавать перепады яркости. На втором слое сети уже появляется возможность распознавать окружности, углы. К третьему кругу - образы человека, половые отличия пока не учитываются, различные надписи. С каждым последующим кругом распознаваемые образы становятся сложнее. За счёт нейронной сети, машина самостоятельно вырабатывает представление, определяет важные визуальные образы и даже самостоятельно расстанавливает их в зависимости от важности. В будущем программа начнёт лучше понимать изображение.

6 - Что уже разработано?

Наибольшее количество проектов сегодня задействуют глубокое обучение для распознания изображений и определения аудиозаписей, хотя уже есть первые программы для диагностики болезней. Уже сегодня нейронные сети применяются в Google для приложения перевода текста с картинок. Используя Deep Learning, легче определить наличие букв на фотографиях и их контур, а затем программа переводит полученный текст.

Ещё интересный проект – DeepFace, он также специализируется на работе с фото, её разрабатывали для определения черт лица. Уже сегодня точность программы достигает 97,25%, такая же точность отмечается и у человека.

-4

В 2016 году был запущен проект WaveNet от корпорации Google – это система для имитации человеческого голоса. Чтобы достичь качественного обучения в систему были загружены миллионы минут голосовых разговоров с сервисом Окей Google. После всего цикла обучения машина самостоятельно составила предложение, везде расставила правильные ударения, характерный акцент, без каких-либо неуместных пауз.

Нейронная сеть даже способна на семантическую сегментацию видео и фото, то есть система узнает о наличии человека на изображении и идеально точно определит контур лица. Сегодня технология активно используется в автомобилях с автопилотом, задача которых заключается в определении помех на дороге, разметки, знаков и других дорожных условий. 

Нейросеть в медицинской отрасли помогает отличать диабетическую ретинопатию лишь предоставив фотографии глазных яблок человека. В США технология уже стоит на вооружении в клиниках.

7 - Почему глубокое обучение начало распространяться недавно?

Ранее применять технологию было крайне сложно, затратно и требовалось слишком много времени для обучения. Всё упиралось в недостаток мощности графических адаптеров и объёмов оперативной памяти. Из-за широкого распространения мощных графических процессоров, произошёл настоящий бум в этой сфере. Теперь они способны быстрее работать, стоят дешевле и практически не имеют ограничений по объёму хранилищ. 

8 - Это прорыв, теперь всё изменится?

Невозможно однозначно ответить на вопрос, эксперты не пришли к единому мнению. Одна сторона отмечает, что миллиардные вложения со стороны Facebook, Google и других гигантов имеют смысл и приведут к ещё большему развитию технологии. Глубинное обучение уже готово преобразить весь мир технология – по мнению оптимистов. Заявление Эндрю Ынг сообщает «Если человеческий ум способен найти решение проблемы за несколько секунд, высока вероятность скорой оптимизации процесса». Этот разработчик называет Deep Learning «новым электричеством», сравнивая с главным прорывом человечества. Скорее всего те компании, которые не станут внедрять глубокое обучение, в скором будущем ощутят себя сильно отстающими от конкурирующих компаний.

Есть и скептики, которые заявляют, что глубокое обучение – не более чем модное слово. Одним из таких людей является Сергей Бартунов старший преподаватель компьютерных наук ВШЭ, он уверяет, что нейронные сети являются лишь одним из способов машинного обучения и далеко не лучшим. 

DARKSQUAD.RU - Больше интересных статей у нас на канале, подпишись :)