Выделив новый тип изучения, Вильгельм Рентген назвал его X-лучами (X-rays). Под этим именем оно известно во всём мире, кроме России.
Самый характерный источник рентгена в космосе — горячие внутренние области аккреционных дисков вокруг нейтронных звезд и черных дыр. Также в рентгеновском диапазоне светит солнечная корона, разогретая до 1–2 млн градусов, хотя на поверхности Солнца всего около 6 тысяч градусов.
Но рентген можно получить и без экстремальных температур. В излучающей трубке медицинского рентгеновского аппарата электроны разгоняются напряжением в несколько киловольт и врезаются в металлический экран, испуская при торможении рентген. Ткани организма по-разному поглощают рентгеновское излучение, это позволяет изучать строение внутренних органов.
Сквозь атмосферу рентген не проникает, космические рентгеновские источники наблюдают только с орбиты. Жесткий рентген регистрируют сцинтилляционными датчиками. При поглощении рентгеновских квантов в них ненадолго возникает свечение, которое улавливают ФЭУ. Мягкое рентгеновское излучение фокусируют металлическими зеркалами косого падения, от которых лучи отражаются под углом менее одного градуса, подобно гальке от поверхности воды.
Источники
Рентгеновские источники в районе центра нашей Галактики
Фрагмент снимка окрестностей центра Галактики, полученного рентгеновским телескопом «Чандра». Виден целый ряд ярких источников, которые, по всей видимости, являются аккреционными дисками вокруг компактных объектов — нейтронных звезд и черных дыр.
Окрестности пульсара в Крабовидной туманности
Окрестности пульсара в Крабовидной туманности — остаток сверхновой звезды, вспышка которой наблюдалась в 1054 году. Сама туманность — это рассеянная в космосе оболочка звезды, а ее ядро сжалось и образовало сверхплотную вращающуюся нейтронную звезду диаметром около 20 км.
Вращение этой нейтронной звезды отслеживается по строго периодическим колебаниям ее излучения в радиодиапазоне. Но пульсар излучает также в видимом и рентгеновском диапазонах. В рентгене телескоп «Чандра» сумел получить изображение аккреционного диска вокруг пульсара и небольших джетов, перпендикулярных его плоскости (ср. Аккреционный диск вокруг сверхмассивной черной дыры).
Аккреционный диск в тесной двойной системе (рис. художника)
Солнечные протуберанцы в рентгене
Видимая поверхность Солнца разогрета примерно до 6 тысяч градусов, что соответствует видимому диапазону излучения. Однако корона, окружающая Солнце, разогрета до температуры более миллиона градусов и потому светится в рентгеновском диапазоне спектра.
Данный снимок сделан во время максимума солнечной активности, которая меняется с периодом 11 лет. Сама поверхность Солнца в рентгене практически не излучает и потому выглядит черной. В период солнечного минимума рентгеновское излучение Солнца значительно снижается. Изображение получено японским спутником Yohkoh («Солнечный луч»), известным также как Solar-A, который работал с 1991 по 2001 год.
Приемники
Рентгеновский телескоп «Чандра»
Одна из четырех «Великих обсерваторий» NASA, получившая название в честь американского астрофизика индийского происхождения Субраманьяна Чандрасекара (1910–95), лауреата Нобелевской премии (1983), специалиста по теории строения и эволюции звезд.
Основной инструмент обсерватории — рентгеновский телескоп косого падения диаметром 1,2 м, содержащий четыре вложенных параболических зеркала косого падения (см. схему), переходящих в гиперболические. Обсерватория выведена на орбиту в 1999 и работает в диапазоне мягкого рентгена (100 эВ—10 кэВ). Среди множества открытий обсерватории «Чандра» — первый снимок аккреционного диска вокруг пульсара в Крабовидной туманности.
Схема рентгеновского телескопа с зеркалами косого падения
В оптических и радиотелескопах используется свойство параболоида сводить параллельный пучок излучения от далекого объекта в одну точку в фокальной плоскости. Но для этого излучение должно отражаться от зеркальной поверхности параболоида. Рентгеновские кванты настолько энергичны, что пробивают поверхность и поглощаются в веществе зеркала. Поэтому построить традиционного вида рентгеновский телескоп нельзя. За исключением одной возможности.
Мягкое рентгеновское излучение может отражаться от полированного металла, если падает на него очень полого, под углом меньше одного градуса. Это дает возможность использовать для фокусировки мягкого рентгена параболическое зеркало. Только брать приходится не вершину параболоида, а кольцевой пояс на порядочном удалении от нее. Рентгеновское зеркало косого падения похоже на отрезок трубы, чуть сужающийся к одному концу. Такое кольцо перехватывает очень небольшую долю излучения. Чтобы повысить эффективность телескопа, несколько таких зеркал косого падения концентрически вкладываются друг в друга. Изготовление такой системы требует высочайшей точности и чрезвычайно трудоемко.
Поскольку рентгеновские телескопы могут работать только в космосе, все они являются уникальными приборами.
Земное применение
Рентгеновская трубка
Электронная лампа, служащая источником мягкого рентгеновского излучения. Между двумя электродами внутри запаянной вакуумной колбы прикладывается напряжение 10–100 кВ. Под действием этого напряжения электроны разгоняются до энергии 10–100 кэВ. В конце пути они сталкиваются с полированной металлической поверхностью и резко тормозятся, отдавая значительную часть энергии в виде излучения в рентгеновском и ультрафиолетовом диапазоне.
Рентгеновский снимок
Изображение получается за счет неодинаковой проницаемости тканей человеческого тела для рентгеновского излучения. В обычном фотоаппарате объектив преломляет свет, отраженный объектом, и фокусирует его на пленке, где формируется изображение.
Однако рентгеновское излучение очень трудно сфокусировать. Поэтому работа рентгеновского аппарата больше похожа на контактную печать снимка, когда негатив кладется на фотобумагу и на короткое время освещается. Только в данном случае в роли негатива выступает человеческое тело, в роли фотобумаги специальная фотопленка, чувствительная к рентгеновским лучам, а вместо источника освещения берется рентгеновская трубка