Найти в Дзене
Лампа Электрика

Почему перегорает лампа накаливания и как продлить ей жизнь

Несмотря на бурное развитие энергосберегающих технологий, старая добрая лампа накаливания продолжает широко использоваться. Поэтому продление срока ее службы – весьма актуальная задача даже сегодня. Почему лампочка Ильича служит так недолго и можно ли продлить ей жизнь? Конструкция и принцип работы Для того чтобы решить вопрос по продлению жизни лампы накаливания, необходимо четко представлять ее конструкцию и принцип работы. Конструктивно любая лампа накаливания независимо от типа, мощности и назначения представляет собой стеклянную колбу, заполненную инертным газом. В колбе на токопроводящих держателях крепится так называемое тело накала – спираль из тугоплавкого металла. Обычно это вольфрам или его сплавы. К колбе крепится цоколь – он позволяет быстро подключить прибор к сети. При подаче на лампу напряжения спираль накаляется и начинает ярко светиться. Инертный газ не позволяет спирали окислиться и тут же сгореть. Вроде все просто и должно быть долговечным. Но это не совсем так. Т
Оглавление

Несмотря на бурное развитие энергосберегающих технологий, старая добрая лампа накаливания продолжает широко использоваться. Поэтому продление срока ее службы – весьма актуальная задача даже сегодня. Почему лампочка Ильича служит так недолго и можно ли продлить ей жизнь?

Конструкция и принцип работы

Для того чтобы решить вопрос по продлению жизни лампы накаливания, необходимо четко представлять ее конструкцию и принцип работы.

Конструктивно любая лампа накаливания независимо от типа, мощности и назначения представляет собой стеклянную колбу, заполненную инертным газом. В колбе на токопроводящих держателях крепится так называемое тело накала – спираль из тугоплавкого металла. Обычно это вольфрам или его сплавы. К колбе крепится цоколь – он позволяет быстро подключить прибор к сети.

Конструкция классической лампы накаливания
Конструкция классической лампы накаливания

При подаче на лампу напряжения спираль накаляется и начинает ярко светиться. Инертный газ не позволяет спирали окислиться и тут же сгореть. Вроде все просто и должно быть долговечным. Но это не совсем так. Точнее, совсем не так.

Благодаря инертному газу спираль действительно почти не окисляется, но из-за высокой температуры вольфрам испаряется и оседает на стенках колбы. Со временем спираль утончается и, наконец, перегорает - лампу можно выбросить. Причем срок жизни прибора не особо и велик – в районе 1 000 часов.

Существуют и лампы, в колбе которых вакуум. В основном это миниатюрные индикаторные лампочки и лампы для карманных фонарей. Но испарение вольфрама с тела накала происходит и в них.

Это одна из причин выхода лампы накаливания из строя. Но есть еще одна, причем немаловажная. Любой проводник изменяет свое электрическое сопротивление в зависимости от температуры. Чем нагрев сильнее, тем сопротивление выше.

Если ради эксперимента измерить сопротивление холодной спирали лампочки накаливания, то можно получить очень любопытный результат. Сопротивление холодной 100-ваттной лампы будет равняться 38 Ом.

Сопротивление тела накала 100-ваттной лампы
Сопротивление тела накала 100-ваттной лампы

Согласно закону Ома при таком сопротивлении и напряжении питания в 220 В ток через лампу будет равняться:

I = U/R =220/38 = 5.8 А

Потребляемая мощность составит соответственно:

P = I*U = 5.8*220 = 1 276 Вт

Но на лампочке написано 100 Вт, а не 1 270! В чем подвох? Он как раз в том, что холодное тело накала имеет электрическое сопротивление в 10 раз ниже номинального! Когда спираль прогреется, ее сопротивление станет нормальным и прибор выйдет на штатный режим, потребляя все те же 100 Вт.

Но проблема состоит в том, что в момент включения спираль холодная и лампа потребляет более киловатта, хотя рассчитана на мощность вдесятеро меньшую. Очень часто спираль не выдерживает такого токового удара и сгорает. Особенно часто это происходит при утончении тела накала после длительной работы.

Бытует мнение, что чем реже включаешь/выключаешь лампу накаливания, тем дольше она проживет. Теперь вполне очевидно, что это абсолютная истина – лампа накаливания чаще всего сгорает именно во время включения из-за токового удара.

Как продлить жизнь?

Прежде всего, рассмотрим первую причину выхода прибора из строя – перегорание спирали из-за ее утончения. Для того чтобы решить эту проблему, достаточно уменьшить на приборе напряжение. В этом случае спираль будет работать с недонакалом и, естественно, проживет много дольше. Как уменьшить напряжение, если в сети оно постоянно держится на одном уровне? Ставить громоздкий понижающий трансформатор?

Это неоправданно дорого, да и технически трудновыполнимо – придется либо питать все лампочки от отдельной линии, либо ставить трансформатор на каждый светильник. Но можно обойтись и более простыми и бюджетными решениями.

Питание через диод

Как известно, большинство бытовых приборов, включая осветительные, питается от бытовой сети 220 В. Напряжение в сети переменное, то есть плавно изменяет свой знак 100 раз в секунду.

График, поясняющий понятие переменного напряжения
График, поясняющий понятие переменного напряжения
Величина 220 В относится к действующему напряжению. Амплитудное или мгновенное значение в таких сетях составляет 310 В, но для понимания вопроса это несущественно.

Что будет, если в этой синусоиде срезать одну полуволну?

Синусоида со срезанной полуволной
Синусоида со срезанной полуволной

Очевидно, что действующее напряжение уменьшится вдвое, что и требуется для решения поставленной задачи. А срезать одну полуволну можно обычным диодом – ведь он пропускает ток только в одном направлении. Итак, чтобы уменьшить питающее лампу напряжение вдвое, достаточно включить ее через диод. При этом полярность включения полупроводника роли не играет – абсолютно не важно, верхняя или нижняя полуволна будет срезана.

Схема подключения лампочки через диод
Схема подключения лампочки через диод

В результате лампа будет питаться пониженным напряжением и прослужит в десятки раз дольше. Схема предельно простая и ее сможет собрать практически каждый, кто знаком с основами электротехники. Но она, увы, имеет существенные недостатки. Во-первых, спектр излучения спирали, работающей практически в полнакала, сдвинется в «красную» сторону. То есть свет такой лампы будет тускло-желтым и неприятным.

Ну а во-вторых, после срезания одной полуволны частота питающего напряжения снизится вдвое и упадет до пятидесяти герц. Это не только неприятно, но и сильно утомляет глаза. Таким образом, за простоту схемы придется платить достаточно высокую цену. Поэтому использовать подобный вариант стоит лишь в местах, где редко бывают люди и не занимаются серьезной работой – на лестничных площадках, в кладовых и т.п.

Выбирая диод, необходимо учитывать: его максимально допустимое обратное напряжение должно быть не менее 400 В, а максимально допустимый прямой ток - в полтора-два раза выше тока, потребляемого лампой.

Можно ли как-то обойти эти проблемы, не усложняя при этом схему? Первую проблему – желтый неприятный свет – обойти можно лишь частично. А вот второй вопрос решить можно.

Схема с гасящим конденсатором

Любой конденсатор, работая в цепях переменного тока, обладает некоторым реактивным сопротивлением тем большим, чем ниже частота напряжения и меньше емкость конденсатора. Причем сопротивление это будет действовать на обе полуволны.

Ограничение амплитуды синусоиды гасящим конденсатором
Ограничение амплитуды синусоиды гасящим конденсатором

Поскольку напряжение в сети переменное, то включив последовательно с лампой конденсатор соответствующей емкости, можно снизить питающее напряжение без снижения частоты. Мерцание, появившееся при использовании диода, в этом случае не появится.

Схема подключения лампочки через гасящий конденсатор
Схема подключения лампочки через гасящий конденсатор

Что касается яркости, то ее можно регулировать в широких пределах практически от 0 до 90-95%. Это очень удобно. Если снизить напряжение на лампе не вдвое, а, к примеру, всего на 10-20%, подобрав соответствующий конденсатор, то желтизна и снижение светового потока будет не так сильно заметно, а лампа прослужит пусть не так долго, как с диодом, но все равно много дольше, чем при включении напрямую.

Как подобрать гасящий конденсатор? Сделать это совсем не сложно – достаточно воспользоваться калькулятором и парой формул. Прежде всего, необходимо рассчитать ток через лампу при желаемом напряжении:

I = P/U

Где:

  • I – эффективный ток через лампу;
  • P – мощность, которую будет потреблять лампа при напряжении U;
  • U – желаемое напряжение.

Для того чтобы узнать, какую мощность будет потреблять лампа при пониженном напряжении, решим простую пропорцию:

Pном/U1 = P/U2 или P = U2*Pном/U1

Где:

  • Pном – мощность лампочки при номинальном напряжении;
  • U1 – номинальное напряжение питания лампочки;
  • P – мощность, потребляемая лампой при желаемом напряжении;
  • U2 – желаемое напряжение питания лампочки.

На самом деле зависимость мощности от напряжения нелинейна – при снижении напряжения тело накала будет нагреваться слабее, а значит, его сопротивление станет понижаться. Таким образом, реальная потребляемая мощность будет несколько выше расчетной.

Теперь нам нужна формула, приведенная ниже:

-8

Здесь:

· C – емкость гасящего конденсатора;

· f – частота питающей сети;

· U – напряжение питающей сети;

· Uвых – желаемое питающее напряжение лампы;

· I – эффективный ток через лампу (см. первую формулу).

Конденсатор, используемый в этой схеме, должен быть бумажным, неполярным и рассчитан на рабочее напряжение не ниже 400 В.

Происходит ли экономия электроэнергии?

Можно ли продлив срок службы лампочки подобными схемами, заодно и сэкономить электроэнергию? На первый взгляд можно – ведь лампа будет потреблять меньшую мощность. На самом деле при таких схемах произойдет не экономия, а перерасход!

Если понизить питающее напряжение лампы накаливания вдвое, то световой поток, создаваемый ею, упадет примерно в 4 раза! То есть, чтобы получить такой же световой поток, как у стоваттной лампы, необходимо использовать 4 таких же лампочки, включенные через диоды. Нетрудно подсчитать, что расход электроэнергии при таком раскладе увеличится ровно вдвое.

Использование плавного включения

Итак, использование диодов и конденсаторов действительно позволяет существенно продлить срок службы ламп накаливания, но, несмотря на свою простоту, в таких решениях больше минусов, чем плюсов. Есть ли оптимальный вариант? Безусловно. Поскольку лампы накаливания чаще всего сгорают от токового удара, для решения проблемы достаточно от него избавиться. Необходимо устройство, подающее напряжение на световой прибор после включения не мгновенно, а с постепенным увеличением.

Такое устройство при желании и умении можно собрать – схем в сети Интернет есть множество. Но для неспециалиста в радиоэлектронике проще воспользоваться так называемым УПВЛ – Устройством Плавного Включения Лампы.

Устройство плавного включения лампы
Устройство плавного включения лампы

Найти этот прибор можно практически в любом соответствующем магазине, и стоит он относительно недорого. Если включить его последовательно с лампочкой, то напряжение на ней при подаче питания будет увеличиваться постепенно и токового удара не произойдет. Единственно, выбирая УПВЛ, необходимо проследить, чтобы оно было рассчитано на работу в сети 220 В, а мощность должна быть не меньше мощности используемой лампы.

Есть и еще один вариант – диммер, позволяющий регулировать освещенность в комнате по своему желанию. Включается свет таким диммером плавно, так что токового удара не произойдет и в этом случае. Кроме того, покупая диммер, мы получаем дополнительное удобство – возможность изменять освещение в комнате по своему усмотрению.

Диммер с плавным включением лампы
Диммер с плавным включением лампы