Найти в Дзене
N + 1

Ликбез по технологиям чтения ДНК — Часть 2

Каждые два года количество транзисторов, размещаемых на интегральной микросхеме, увеличивается вдвое. Так звучит каноническая версия закона Мура, – эмпирического наблюдения одного из основателей Intel, которое известно каждому, интересующемуся новостями технологий. Как драйвер невероятного успеха IT-индустрии закон Мура давно стал, пожалуй, самым наглядным маркером прогресса. Однако есть области технологий, где даже эта «икона сингулярности» выглядит довольно бледно. Речь идет о технологиях чтения ДНК.

Первую часть материала можно и даже необходимо прочитать здесь.

Фотография: Linden Gledhill
Фотография: Linden Gledhill

В 1990 году стартовала международная программа «Геном человека», в которой каждому коллективу из Америки, Европы и Японии были выделены отдельные участки предварительно размеченного генома для секвенирования. К этому моменту несколько биотехнологических компаний, прежде всего Applied Biosciences, научились автоматизировать процессы секвенирования по Сенгеру. Сначала секвенаторы могли самостоятельно только читать «лестницы» на фотопленке, превращая их в буквенную последовательность, а затем сам процесс разделения фрагментов ДНК удалось перенести из геля (который нужно было каждый раз заливать заново) в тонкий капилляр. Радиоактивные метки заменили флюоресцентными, и это позволило читать последовательность прямо во время прохода сквозь капилляр: четыре цвета — четыре разные буквы.

Одним из первых, кто осознал возможности автоматизации секвенирования, был Крейг Вентер — будущий одиозный зачинатель «гонки геномов», решивший опередить в прочтении генома человека всю международную коллаборацию (а также автор первого живого организма с полностью синтетической ДНК). В 1992 году, спустя два года после старта проекта «Геном человека», Вентер организовал собственный институт с броской аббревиатурой TIGR (The Institute for Genomic Research), в котором секвенирование ДНК было впервые поставлено на поток. В 1995 году группе Вентера удалось получить первый геном полноценного клеточного организма, точнее даже двух: бактерий Haemophilus influenzae и Mycoplasma genitalium.

Фотография: Linden Gledhill
Фотография: Linden Gledhill

С чисто биологической точки зрения принципиальным было то, что речь шла именно о полноценных клеточных геномах: вирусы живут только в клетках и в своей жизни почти во всем полагаются на клеточные системы, кодируемые не собственным геномом, а геномом клетки. И только последние содержат полную необходимую для жизни информацию и поэтому гораздо интереснее вирусных геномов.

С технической точки зрения новаторство Вентера заключалось в том, что он впервые применил радикальный подход к секвенированию генома. Как уже говорилось, до сих пор ученые работали с геномом «по кусочкам», что позволяло читать ДНК самых сложных организмов но и требовало огромных затрат времени на клонирование. Вентер стал пионером так называемого «метода дробовика», когда весь геном целиком нарезается на множество коротких пересекающихся фрагментов, которые прочитываются, а затем собираются снова: снизу вверх.

Такой подход существенно упрощает все стадии, требующие участия человека и хорошо подходит для автоматизации. Однако у него есть два принципиальных недостатка. Во-первых, сборка генома из миллионов и миллионов коротких фрагментов требует огромных вычислительных ресурсов, подразумевает создание принципиально новых математических алгоритмов и требует многократного покрытия (например, чтобы собрать геном длиной 100 нуклеотидов вам нужно прочитать фрагментов общей длиной в 1000 — в этом случае говорят про десятикратное покрытие).

А во-вторых, работает этот метод по принципу «пока не сделано всё — не сделано ничего». Именно благодаря этой особенности наблюдать за гонкой геномов было особенно интересно: если бы качества и количество «сырых» последовательностей Вентеру немного не хватило, вся авантюра c секвенированием оказалась бы пустой тратой времени. Этого, однако, не случилось. Оба генома — и полученный в ходе международного проекта и собранный частной компанией Вентера были опубликованы в двух выпусках Nature и Science, вышедших на одной неделе в феврале 2001 года.

Услышав про проект «Геном человека» многие спрашивают: — а какого именно? Кем был тот человек, на прочтение генома которого было потрачено столько денег и усилий ученых? И хотя ответ тривиален (никем он не был, это референтный геном, ДНК для которого была получена у нескольких анонимных доноров) такой вопрос бьет в самую точку. Никто из нас не является обладателем консенсусного генома, в ДНК каждого существует огромное количество уникальных отличий, и именно эти отличия делают нас теми, кто мы есть. Поэтому в первый же день после публикации референтного генома человека стало ясно, что главной целью всех последующих исследований в человеческой геномике станут индивидуальные отличия.

Есть определенная ирония в том, что первыми людьми, персональный геном которых был прочитан, стали два главных соперника «гонке геномов»: первооткрыватель структуры ДНК Джеймс Уотсон и уже знакомый нам Крейг Вентер. По сравнению с референтным геномом у каждого из них было обнаружено около трех миллионов индивидуальных полиморфизмов — однобуквенных замен, которые отличаются от человека к человеку. Стоимость секвенирования обоих индивидуальных геномов к моменту их прочтения в 2007 году составила около миллиона долларов. И это, конечно существенно ниже, чем 100 миллионов в 2001 году, но все равно немало: с такими ценами рассчитывать на прочтение геномов сотен или тысяч человек или предлагать такую услугу обычным людям было бы странно. Однако, к счастью, как раз в тот момент, когда референтный геном был создан, созрела технология, позволяющая «вылавливать» индивидуальные отличия в геномах принципиально проще и дешевле обычного секвенирования. Речь идет о технологии ДНК-микрочипов.

Фотография: Linden Gledhill
Фотография: Linden Gledhill

ДНК-микрочип — это небольшая пластинка, на которой с помощью технологии, напоминающей фотолитографию, закреплены короткие одноцепочечные фрагменты ДНК. При инкубации с раствором образца две молекулы ДНК — одна на чипе, другая в образце — могут образовать прочную пару. Если все молекулы образца предварительно пометить флюоресцентным маркером, то после инкубации мы увидим на чипе светящиеся точки в тех местах, где образовались прочные пары. И если это произошло, значит последовательности фрагментов ДНК в образце точно совпали с последовательностями на чипе — а их мы знали заранее.

Установив, какие в популяции существуют индивидуальные особенности, мы можем создать микрочип с сотнями тысяч различных полиморфизмов. Это позволит получать информацию о наличии тех или иных «однобуквенных» замен в вашей ДНК всего за несколько часов. Формально, такая процедура не является секвенированием, но она позволяет читать последовательности ДНК, варианты который мы уже знаем. Использовать микрочипы для чтения совершенно новых последовательностей нельзя (хотя работы в этом направлении ведутся), но когда речь идет о персональной геномике, этого и не требуется: ДНК разных людей, как известно, совпадают на 99 процентов. С помощью современных микрочипов можно прочитать около миллиона известных полиморфизмов, то есть примерно одну треть от того их количества, которое присутствует в геноме.

ДНК-микрочипы стали появляться в научных лабораториях в 90-х, а в середине 2000-х появились первые компании, предлагающие анализ персонального генома на их основе. Небезызвестная 23andMe, основанная бывшей женой Сергея Брина, как раз была одной из первых таких компаний. Сейчас у компании Энн Вожитски появилось множество конкурентов, причем, как в мире, так и в России.

Однако сегодня технологиям генотипирования наступают на пятки (и по скорости, и по стоимости) так называемые методы секвенирования нового поколения. Именно их появление обвалило стоимость процедуры с миллионов до тысяч долларов. Это методы очень разные, и обо всех них рассказать не получится.

Немного остановится можно, пожалуй, только на так называемом пиросеквенировании — методе, который основан на гидролизе пирофосфата. При соединении нуклеотидов друг с другом в цепочку ДНК в раствор всегда выбрасывается это соединение — высокоэнергетичный фрагмент нуклеотида, который затем бесследно разрушается и своей «гибелью» обеспечивает однонаправленность реакции синтеза. В середине 2000-х многие научные группы независимо заметили, что разрушение пирофосфата уместно использовать при секвенировании: его можно «скармливать» специальному ферменту, который умеет превращать энергию связи пирофосфата в импульс света. Тогда, по наличию или отсутствию вспышки можно будет судить — прошла ли реакция присоединения нуклеотида к цепочке или нет. Когда на матрице ДНК образца синтезируется ее копия, вспышка означает наличие в нуклеиновой кислоте комплементарного основания.

Фотография: Linden Gledhill
Фотография: Linden Gledhill

Выглядит это так: ДНК режут на миллионы коротких фрагментов, наносят на микроскопические шарики, копируют их (так, чтобы на одном шарике были только идентичные копии одного фрагмента) и распределяют по микроскопическим ячейкам, сделанным в специальной подложке. После этого в ячейках начинается синхронная реакция. Сквозь подложку пропускают один вид нуклеотидов — если в ячейке при этом происходит вспышка, значит этот нуклеотид подходит для синтеза, значит на матрице находится комплементарный нуклеотид. Затем подложку отмывают от первого нуклеотида и подают второй — на этот раз загораются другие ячейки, те, в которых есть соответствующее комплементарное основание. Так, многократно промывая ячейки четырьмя нуклеотидами, биоинженеры читают последовательность ДНК по вспышкам в отдельных ячейках. Главная особенность этого и подобных методов — возможность проводить огромное количество параллельных реакций. И хотя точность реакции в каждой из ячеек невелика, огромное количество таких ячеек делает секвенирование очень быстрым и, следовательно, дешевым.

И все же пока полногеномное секвенирование не может сравняться по стоимости с генотипированием. Да, в исследовательских лабораториях технологии нового поколения уже вытесняют генотипирование из традиционных для этого метода задач (например, для анализа РНК и экспрессии генов). Но вот в персональной геномике дела обстоят иначе: особенности генома, которые заметны только при полном секвенировании и не видны микрочипам настолько редки, что настоящее секвенирование кажется стрельбой из пушки по воробьям.

В последние год-два на рынке полногеномного чтения ДНК наблюдается небольшой застой (кстати, напоминающий ситуацию перед тем, как появились методы нового поколения). Поэтому можно ожидать, что в ближайшие годы потребительская геномика будет по-прежнему полагаться на ДНК-микрочипы. Учитывая, то, насколько доступными они уже стали, даже введение новых революционных методов секвенирования вряд ли что-либо сильно поменяет на потребительском рынке. А значит, наступил момент, когда дело уже не в технологиях, с помощью которых получаются геномные данные, а в их интерпретации. Но это уже совсем другой разговор.

Александр Ершов