Твердотельный накопитель 2,5" и карандаш
SSD ADATA IM2S3138E-128GM-B с интерфейсом M.2
2,5" SSD-накопитель 2010 года, использовавшийся в ноутбуках и компьютерах
SSD с переходником для установки в отсек 3.5" для жёстких дисков
mSATA SSD в комплекте с адаптером и корпусом
HGST SN150 1,6ТБ, твёрдотельный NVMe-совместимый накопитель в форм-факторе платы PCI-E
Твердотельный накопитель (англ. solid-state drive, SSD) — компьютерное энергонезависимое немеханическоезапоминающее устройство на основе микросхем памяти, альтернатива HDD. Кроме микросхем памяти, SSD содержит управляющий контроллер. Наиболее распространённый вид твердотельных накопителей использует для хранения информации флеш-память типа NAND, однако существуют варианты, в которых накопитель создаётся на базе DRAM-памяти, снабжённой дополнительным источником питания — аккумулятором.
В настоящее время твердотельные накопители используются как в носимых (ноутбуках, нетбуках), так и в стационарных компьютерах для повышения производительности. Наиболее производительными сейчас выступают SSD формата M.2, у них при подходящем подключении скорость записи/чтения данных может достигать 3800 мегабайт в секунду.
По сравнению с традиционными жёсткими дисками (HDD) твердотельные накопители имеют меньший размер и вес, являются беззвучными, а также многократно более устойчивы к повреждениям (например, к падению) и имеют гораздо бóльшую скорость записи. В то же время, они имеют в несколько раз бóльшую стоимость в расчете на гигабайт и меньшую износостойкость (ресурс записи.)
Преимущества
- Отсутствие движущихся частей, отсюда:
- полное отсутствие шума;
- стабильность времени считывания файлов вне зависимости от их расположения или фрагментации;
- скорость чтения/записи выше, чем у распространённых жёстких дисков, и в ряде операций может быть близка к пропускной способности интерфейсов (SAS/SATA II 300 МБ/с, SAS/SATA III 600 МБ/с). Твердотельные накопители могут реализовываться с более быстрыми интерфейсами: SATA III, PCI Express, NGFF (M.2, в вариантах с PCIe), SATA Express, NVM Express (стандарт на подключение SSD по шинам PCI Express), U.2.
- количество произвольных операций ввода-вывода в секунду (IOPS) у SSD на порядок выше, чем у жёстких дисков, за счёт возможности одновременного запуска множества операций и более низкой латентности каждой операции (нет необходимости ожидать оборота диска перед доступом, а также ожидать наведения головки диска на нужную дорожку);
- низкое энергопотребление;
- намного меньшая чувствительность к внешним электромагнитным полям;
Недостатки
- Главный недостаток NAND SSD — ограниченное количество циклов перезаписи. Обычная (MLC, Multi-level cell, многоуровневые ячейки памяти) флеш-память позволяет записывать данные примерно 3000-10 000 раз (гарантированный ресурс); в самых дешёвых накопителях (USB, SD, uSD) может использоваться ещё более плотная память типа TLC (MLC-3) с ресурсом порядка 1000 циклов или менее. Самые дорогостоящие виды памяти (SLC, Single-level cell, одноуровневые ячейки памяти) — имеют порядка сотен тысяч циклов перезаписи. Для борьбы с неравномерным износом в высокопроизводительных (SATA и PCIe) SSD применяются схемы балансирования нагрузки: контроллер хранит информацию о том, сколько раз какие блоки перезаписывались, и при необходимости производит запись в менее изношенные блоки. При выработке реального ресурса банков памяти накопитель может перейти в режим «только для чтения», что позволит скопировать данные. Данный недостаток отсутствует у RAM SSD, а также у нескольких перспективных технологий, которые к концу 2010-х могут заменить флеш-память, например FRAM, где ресурс может составлять десятки лет в режиме непрерывной перезаписи или технология MRAM, в которой используются магнитные моменты, а информация может хранится неограниченное количество лет. При ряде вариантов использования, в том числе в бытовых компьютерах, при корректно работающих алгоритмах выравнивания износа, ресурс накопителей обычно серьёзно превышает завленный производителем гарантийный срок службы, в среднем составляющий 5 лет;
- цена гигабайта SSD-накопителей, несмотря на продолжающееся на протяжении многих лет быстрое снижение, всё ещё в несколько раз (6-7 для наиболее дешёвой флеш-памяти) выше цены гигабайта HDD (в 2012—2015 годах: менее 0,1 $ за ГБ в HDD, от 1 до 0,5-0,4 доллара за ГБ в SSD). Уравнивание стоимости за единицу объёма SSD и HDD прогнозируется приблизительно к 2019 году, к тому же стоимость SSD практически прямо пропорциональна их ёмкости, в то время как стоимость традиционных жёстких дисков зависит не только от количества пластин и медленнее растёт при увеличении объёма накопителя. В то же время небольшие по объёму SSD могут быть заметно дешевле, чем жёсткие диски наименьших объёмов, в которых всегда требуется использовать точные механические системы. Это позволяет удешевлять массовые ПК, дешёвые ноутбуки и встраиваемые системы;
- модели накопителей минимального объёма обычно имеют немного более низкую производительность в ряде операций за счёт меньшего параллелизма;
- производительность накопителя зачастую может временно снижаться при записи больших объёмов данных (и исчерпании быстрого буфера записи, например участка памяти, работающего в режиме псевдо-SLC), в процессе работы «сборщика мусора» или при обращении к более медленным страницам памяти;
- применение в SSD-накопителях аппаратной команды TRIM для пометки удалённой информации может сильно осложнить или сделать невозможным восстановление удалённой информациисоответствующими утилитами. С другой стороны, из-за выравнивания износа нет способа гарантированно удалять отдельные файлы с SSD: возможен лишь полный сброс всего накопителя при помощи команды «ATA Secure Erase». Команда TRIM помечает блоки как свободные, а решение о моменте физического стирания информации определяется прошивкой устройства;
- возможен выход из строя электронных устройств, в том числе контроллера или отдельных микросхем NAND-памяти либо пассивных компонентов. Среди некоторых моделей выходят из строя до 0,5-2 % SSD накопителей в течение первых лет эксплуатации. В отличие от HDD, выход из строя является внезапным;
- высокая сложность или невозможность восстановления информации после электрических повреждений. Так как контроллер и носители информации в SSD находятся на одной плате, то при превышении или значительном перепаде напряжения могут повредиться несколько микросхем, что приводит к безвозвратной потере информации. Вероятность восстановления данных существует, если повреждён лишь контроллер. В жёстких дисках восстановление информации с приемлемой трудоёмкостью также возможно только при выходе из строя платы контроллера, при сохранении целостности пластин, механики и считывающего оборудования;
- низкая реальная помехозащищённость операций чтения из ячеек памяти и наличие сбойных ячеек, особенно при изготовлении по самым современным («тонким») техпроцессам, приводит к необходимости использования в контроллерах современных моделей всё более сложных внутренних кодов исправления ошибок: ECC, Reed-Solomon, LDPC. В ряде дешёвых SSD внутренние ошибки кодов коррекции могут приводить к значительному увеличению латентности отдельных операций.