Navdeep Singh Dhanjal, Architect designer, Analog Devices, 4/8/2019 Bio Email This Print Comment Rate It 50% 50% Save It Editor’s note: I found this product solution to be a unique and very interesting solution for designers who need power sequencing especially with a large number of power rails. This product looks like it can make designers work a bit easier and with a faster time-to-market.
It’s no secret that electronics systems are becoming more complex across all industries. It is less obvious how this complexity has infiltrated power supply design. For instance, functional complexity is commonly addressed by using ASICs, FPGAs, and microprocessors to enrich application feature sets in ever-smaller form factors. These devices present disparate digital loads to the power system, requiring a wide variety of voltage rails over a range of power levels, each with highly individualized rail tolerances. Likewise, correct start-up and shut-down sequencing of the supplies is important. The multiplying of the number of voltage rails on a board has made power system sequence design and debug exponentially more complicated over time.
Scalability
The number of voltage rails required by an application board is a function of the board’s complexity. A power supply designer may face boards requiring only 10 voltage rails, as well as those requiring 200 voltage rails. Sequencer devices usually top out around 16 rails and are designed to easily be applied up to that number. Once the number of rails goes beyond that supported by a single sequencer, the complexity quickly increases, requiring designers to learn the vagaries of each sequencer, and how it can be combined in complex systems.
Often, multiple sequencers are cascaded in high count voltage rail systems, a nontrivial task. In a cascaded system, complexity increases exponentially with a linear increase in the number of voltage rails. Designers have adopted creative methods of cascading sequencers to mitigate complexity, such as using ping-pong mechanisms or sharing the fault and ‘power good’ status via dedicated digital signals. While these solutions suffice in relatively straightforward sequences, they quickly become untenable in systems that deviate from simple power-up/power-down sequencing.
The ADM1266 solves the problem of complexity with true scalability. It is the latest addition to ADI’s Super Sequencer family of parts. Connecting multiple of these devices requires the use of a dedicated two-wire interdevice bus (IDB) to communicate. Each IC is capable of monitoring and sequencing 17 voltage rails, and up to 16 ADM1266 devices can be connected in parallel to monitor and sequence 257 voltage rails, as long as all devices are connected to the same IDB.
varsha
Member Since: August 22, 2018
Navdeep Singh Dhanjal, Architect designer, Analog Devices, 4/8/2019 Bio Email This Print Comment Rate It 50% 50% Save It Editor’s note: I found this product solution to be a unique and very interesting solution for designers who need power sequencing especially with a large number of power rails. This product looks like it can make designers work a bit easier and with a faster time-to-market.
It’s no secret that electronics systems are becoming more complex across all industries. It is less obvious how this complexity has infiltrated power supply design. For instance, functional complexity is commonly addressed by using ASICs, FPGAs, and microprocessors to enrich application feature sets in ever-smaller form factors. These devices present disparate digital loads to the power system, requiring a wide variety of voltage rails over a range of power levels, each with highly individualized rail tolerances. Likewise, correct start-up and shut-down sequencing of the supplies is important. The multiplying of the number of voltage rails on a board has made power system sequence design and debug exponentially more complicated over time.
Scalability
The number of voltage rails required by an application board is a function of the board’s complexity. A power supply designer may face boards requiring only 10 voltage rails, as well as those requiring 200 voltage rails. Sequencer devices usually top out around 16 rails and are designed to easily be applied up to that number. Once the number of rails goes beyond that supported by a single sequencer, the complexity quickly increases, requiring designers to learn the vagaries of each sequencer, and how it can be combined in complex systems.
Often, multiple sequencers are cascaded in high count voltage rail systems, a nontrivial task. In a cascaded system, complexity increases exponentially with a linear increase in the number of voltage rails. Designers have adopted creative methods of cascading sequencers to mitigate complexity, such as using ping-pong mechanisms or sharing the fault and ‘power good’ status via dedicated digital signals. While these solutions suffice in relatively straightforward sequences, they quickly become untenable in systems that deviate from simple power-up/power-down sequencing.
The ADM1266 solves the problem of complexity with true scalability. It is the latest addition to ADI’s Super Sequencer family of parts. Connecting multiple of these devices requires the use of a dedicated two-wire interdevice bus (IDB) to communicate. Each IC is capable of monitoring and sequencing 17 voltage rails, and up to 16 ADM1266 devices can be connected in parallel to monitor and sequence 257 voltage rails, as long as all devices are connected to the same IDB.
varsha
Member Since: August 22, 2018