При необходимости измерения температуры одним из ключевых моментов является выбор типа используемых датчиков. Принимаемое решение должно максимально полно учитывать условия конкретной задачи.
Измерение температуры является одним из основных требований практически при любых условиях технологических процессов перерабатывающей промышленности. В большинстве устройств используются датчики, основанные на двух технологиях. Выбор между этими двумя подходами определяется конкретными требованиями к технологическому процессу и его условиями.
Колебания температуры могут оказывать значительное влияние на прибыльность, безопасность и качество. Это справедливо в отношении разных отраслей промышленности, таких как нефтегазовая, энергетическая, нефтеперерабатывающая, нефтехимическая, фармацевтическая и др. Точность непрерывного контроля температуры зависит от нескольких факторов, в том числе от правильного выбора датчика для конкретных задач и технологических процессов.
Наиболее распространенными устройствами измерения температуры являются термометры сопротивления (ТС) и термопары (ТП). Эти устройства основаны на двух разных технологиях, каждая из которых обладает своими преимуществами, в соответствии с которыми и делается выбор в пользу той или иной технологии.
В конструкции ТС используется тот факт, что электрическое сопротивление металла возрастает с повышением температуры — явление, известное как тепловое сопротивление.
В отличие от ТС, ТП представляет собой замкнутый термоэлектрический датчик температуры, состоящий из двух отрезков проволоки из разнородных металлов, соединенных между собой на обоих концах. При этом если температура на одном конце этих отрезков проволоки (спае) отличается от таковой на другом, в ней возникает электрический ток. Такое явление известно под названием эффекта Зеебека. Возникающее напряжение зависит от конкретных используемых металлов, а также от текущей разницы температур. Сопоставление различных значений напряжения, возникающих при использовании разных металлов, представляет собой основу измерения температуры термопарой.
Сравнение технологий
Не существует однозначного ответа на вопрос, какой тип датчика является более эффективным в конкретной ситуации. При эксплуатации каждого из них возникают негативные побочные эффекты, которые необходимо принимать во внимание при выборе термодатчика с должной тщательностью.
Термометры сопротивления изготавливаются из резистивного материала с прикрепленными выводами и, как правило, помещаются в защитную оболочку. В качестве резистивного материала может выступать платина, медь или никель. Наибольшее распространение получила платина — благодаря высокой точности и стабильности результатов измерений и их исключительной линейности в широком диапазоне. Не существует однозначного ответа на вопрос, какой тип датчика является более эффективным в конкретной ситуации. При эксплуатации каждого из них возникают негативные побочные эффекты, которые необходимо принимать во внимание при выборе термодатчика с должной тщательностью.
ТС отличаются высоким изменением сопротивления в расчете на один градус изменения температуры. Наиболее распространенными типами датчиков ТС являются проволочный и тонкопленочный. ТС из витой проволоки изготавливаются либо путем навивания резистивной проволоки на керамический сердечник, либо путем помещения спирально витой проволоки в керамическую оболочку, отсюда и название «проволочные ТС». При изготовлении тонкопленочного ТС тонкое резистивное покрытие осаждается на плоскую керамическую подложку (обычно прямоугольной формы). Как правило, тонкопленочные ТС являются менее дорогими по сравнению с проволочными, поскольку для их изготовления требуется меньшее количество различных материалов.
ТП отличаются более высокой скоростью реакции и более широкими допустимыми диапазонами рабочей температуры, чем ТС, однако имеют более низкую точность.
Обычно показания термометров сопротивления являются значительно более стабильными, и ТС обладают более высокой чувствительностью по сравнению с ТП. Долгосрочное смещение показаний ТС является хорошо предсказуемым, в то время как ТП часто ведут себя неустойчиво в данном отношении. За счет этого обеспечивается такое преимущество ТС, как менее частая потребность в калибровке и, следовательно, пониженная стоимость их эксплуатации. Наконец, ТС обеспечивают исключительную линейность показаний. В сочетании с линеаризацией, произведенной в качественном передатчике, становится достижимой точность около 0,1 °C — значительно более высокая по сравнению с максимально возможной при использовании ТП.
В отличие от ТС, ТП представляет собой замкнутый термоэлектрический датчик температуры, состоящий из двух отрезков проволоки из разнородных металлов, соединенных между собой на обоих концах. При этом различные сочетания металлов классифицируются как разные типы датчиков и, соответственно, обладают отличающимися характеристиками. Наиболее часто используемыми типами ТП являются тип J (железо и константан) и тип K (хромель и алюмель). ТП отличаются более высокой скоростью реакции и более широкими допустимыми диапазонами рабочей температуры, чем ТС, однако имеют более низкую точность. Конструкция кабелей ТП отличается повышенной прочностью, за счет чего они могут выдерживать высокие уровни вибрации (рис. 1). В таблице приводится сравнение основных характеристик датчиков.
ТАБЛИЦА. СРАВНЕНИЕ ХАРАКТЕРИСТИК РАССМАТРИВАЕМЫХ УСТРОЙСТВ ДЛЯ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ
Выбор наиболее подходящего типа датчика
При выборе типа датчика, наиболее подходящего для конкретного технологического процесса и поставленной задачи, следует предварительно поставить несколько основных вопросов. Ответы на них предоставят ценную информацию.
Каков диапазон измеряемых температур?
При выборе датчика определение правильного температурного диапазона является очень важным. Если температура будет превышать +850 °C, необходимо использовать ТП. При температурах ниже +850 °C можно выбрать как ТС, так и ТП. Кроме того, не стоит забывать, что проволочные ТС обладают более широким диапазоном измерения температур, чем тонкопленочные (рис. 2).
Какова требуемая точность измерения датчика?
Определение требуемого уровня точности является еще одним важным фактором при выборе датчика. Как правило, ТС имеют большую точность по сравнению с ТП, а проволочные ТС — по сравнению с тонкопленочными. Если предположить, что на выбор одной из двух технологий не оказывают влияние другие факторы, это правило помогает сделать выбор наиболее точного датчика.
Вызывает ли опасения вибрация, возникающая в ходе процесса обработки?
Уровень вибрации при технологическом процессе также необходимо учитывать при выборе датчика. ТП обладают наиболее высокой вибростойкостью из всех существующих технологий измерения температуры.
Существуют различные типы термопар, определяющиеся сочетанием используемой в них проволоки. ТП большинства типов могут использоваться для измерения более высоких температур, чем ТС.
Если достоверно известно, что в ходе процесса возникает сильная вибрация, использование ТП позволит достичь максимальной надежности измерения температуры. Тонкопленочные ТС также устойчивы к воздействию вибрации; тем не менее они не обладают достаточной прочностью. Использование проволочных ТС в условиях повышенной вибрации исключено.
Правильный выбор — точные результаты
Ключевым моментом для успешного применения датчиков температуры является постановка основополагающих вопросов и подбор датчика, наиболее пригодного для поставленных задач и конкретных технологических процессов с учетом всех имеющихся данных. В качестве примера можно привести принятие решения об использовании датчика температуры на участке трубопровода с постоянно изменяющимися условиями при непрерывной вибрации и изменении температуры в диапазоне –200…+300 °C. Целью такого решения является достижение максимально возможной точности, несмотря на описанные непростые условия. Для указанного диапазона температур пригодны термодатчики обоих типов. Хорошо известно, что ТП обладают высокой стойкостью к вибрации, поэтому на первый взгляд может показаться, что ТП являются хорошим вариантом решения поставленной задачи. Тем не менее в данном конкретном случае требуется выполнение измерений с максимально возможной точностью. Правильным выбором для данной задачи будет использование тонкопленочных ТС. Известно, что тонкопленочные ТС отличаются более высокой стойкостью к вибрации по сравнению с проволочными и обеспечивают более высокую точность измерений по сравнению с термопарами.
Приведем еще один пример: измерение температуры в реакторе в диапазоне +550…+900 °C при низком уровне вибрации. Поставлена цель измерения температуры с точностью ±5 °C. ТС дают стабильно точные показания, особенно в условиях невысокой вибрации. Однако не стоит забывать о диапазоне температур. Как правило, ТС не следует использовать при температурах свыше +850 °C. Поскольку температура данного процесса обработки может подниматься до +900 °C, следует остановить свой выбор на ТП. Вероятность получения неверных показаний датчиков или их отказа повышается при их использовании в неподходящих диапазонах температур.
Эшли Хейес (Ashleigh Hayes)
Опубликовано в номере: Control Engineering Россия – Ноябрь 2013