Найти тему

Комплексный анализ масла для диагностики оборудования

Роль методов технической диагностики на современном предприятии очень высока. От комплекса совместных мероприятий диагностических и ремонтных служб в любой отрасли зависит не только безопасная и безаварийная эксплуатация основного технологического оборудования, но и рентабельность и конкурентоспособность всего предприятия на рынке.

Смазочное масло является важным элементом, который позволяет любому механизму, работающему в системе жидкой смазки, успешно функционировать.

Прежде всего, смазывание правильно подобранным работоспособным маслом продлевает срок службы всех механизмов, а также предупреждает преждевременный износ всех узлов и пар трения оборудования.

Кроме того, смазочное масло, находясь в закрытом объёме смазочной системы, позволяет диагностировать любые нарушения её герметичности, например, проникновение в систему смазки охлаждающей жидкости, топлива, абразивных частиц, обводнение, появление ферромагнитных частиц, указывает на наличие того или иного вида дефектов.

Масло омывает все элементы механизма и при этом не только создаёт условия для оптимального функционирования поверхностей трения, но и воспринимает, аккумулирует и сохраняет информацию о фактическом состоянии этого механизма.

Например, капля работающего масла, правильно отобранная из картера редуктора, способна дать представление о состоянии всего оборудования в целом.

Оценивая изменяющиеся свойства работающего масла можно получить информацию о техническом состоянии тех деталей, которые определяют ресурс механизма.

Поэтому диагностика всех типов промышленных машин и механизмов по параметрам работающего масла, в сравнении с любыми другими видами диагностики, дает наилучшие результаты, как по достоверности, так и по спектру одновременно контролируемых показателей.

Кроме диагностики промышленного технологического оборудования трибодиагностика позволяет диагностировать весь автопарк транспортного цеха предприятия, судовых и железнодорожных дизелей, а также все типы двигателей карьерной техники горно-обогатительных комбинатов и строительно-дорожной техники.

Анализ моторного масла часто сравнивают с внутренним снимком двигателя, при котором, по незначительным изменениям основных эксплуатационных параметров качества масла, специалист-аналитик делает вывод, что в двигателе и работавшем масле произошли изменения.

Это даёт возможность определить на ранней стадии область износа, его вид и глубину, установить саму причину, послужившую таким изменениям, как нарушение режима сгорания топлива, сбой в работе воздушных фильтров и системы очистки моторного масла и др., что может способствовать попаданию в масло топлива, охлаждающей жидкости, сажи, песка и др.

Научные исследования, проведённые во многих странах мира, подтвердили высокую надежность диагностических прогнозов неисправностей оборудования, основанных на результатах анализа эксплуатируемого масла.

В большинстве отраслей промышленности получено высокое значение достоверности результатов диагностирования неисправностей по анализу масла, работавшего в механизмах и агрегатах.

При разборке и ремонте все виды дефектов подтверждаются в 95% случаев.

В связи с вышесказанным данный метод диагностики оборудования в настоящее время становится всё более и более актуальным.

Его применяют для уточнения сроков проведения технического обслуживания и ремонта (ТОиР), периодичности замены масел и предотвращения незапланированного простоя оборудования.

При этом актуальным является именно комплексный подход к анализу масла, так как, используя только один метод или рассматривая изменения одного показателя, можно сделать неправильные выводы.

Так общепринято связывать увеличение содержание кремния в масле с попаданием песка или пыли.

А так ли это на самом деле?

Обратимся к таблице 1, в первой строке которой представлен типичный набор результатов элементного анализа масла из нормального работающего двигателя без признаков загрязнения.

Для второго образца мы видим увеличение содержание кремния с одновременным увеличением содержания таких элементов износа, как железо, хром и алюминий.

Это типичная картина при попадании пыли в масло через воздухозаборники. При этом кремний происходит из пыли, железо — из вкладышей, хром — из колец поршня.

В третьей сроке приведён пример, показывающий также увеличение кремния.

Но при полном анализе этих спектральных данных, а также данных инфракрасного (ИК) анализа и подсчёта частиц получается, что здесь нет попадания пыли, а наблюдается проблема в системе охлаждения.

А увеличение кремния вызвано тем, что метасиликат натрия часто вводится в состав охлаждающей жидкости. Поэтому мы также видим и увеличение натрия.

А увеличение меди вызвано выщелачиванием из сердцевины радиатора.

При этом нет частиц пыли и при анализе на счетчике частиц Q200 мы не наблюдаем значительного изменения класса чистоты.

Четвёртый пример анализа образцов масел демонстрирует очень сильный рост значения кремния.

И если только измерять данный показатель, то можно предположить значительное попадание песка.

Однако, если мы посмотрим на значения остальных элементов, то увидим, что они остаются относитольно постоянными.

А если бы было попадание пыли, то должно быть увеличение, по крайней мере, значения алюминия, причём в соотношении от Al:Si=1:10 до 1:2, в зависимости от компонентов окружающей среды, так как песок/пыль как правило содержат не только диоксид кремния, но и различные глинозёмы, алюмосиликаты.

Кроме того, попадание большого количества твёрдых частиц должно было вызвать износ деталей двигателя и, соответственно, элементов износа, как во втором примере.

В пятой строке таблицы 1 также наблюдаемое увеличение кремния не связано с попаданием внешних загрязнителей, а вызвано наличием в масле противопенной присадки — полиметилсиликсанов, т. е. в данном случае так же, как и в предыдущем не требуется проведения каких-либо корректирующих действий.

В последней строке таблицы 1 дан пример, демонстрирующий увеличение кремния, железа, хрома и алюминия, так же как и во втором образце.

Однако соотношение Al:Si близко к 1:1, что необычно для попадания пыли. Это типичный пример данных элементного анализа при подгорании клапана.

Когда инжектор неисправен, то топливо, попадая на верхнюю часть клапана, сгорает, и клапан оплавляется.

В результате этих процессов в масло попадает алюминий и кремний (из клапана), железо (из вкладышей) и хром (из колец), таким образом, кремний здесь не элемент загрязнений, а элемент износа, и на счетчике частиц мы не увидим значительного увеличения класса чистоты.

Однако при анализе на ИК-анализаторе можно ожидать данных о попадании топлива в масло.

Приведённые выше примеры наглядно демострируют необходимость комплексного анализа масла для корректной интерпретации получаемых данных и правильного диагностического заключения.

Использование же неполного набора анализа свойств необходимых для оценки состояния масла и машины в целом ведёт к дискредитации метода и неправильной диагностике оборудования.

Текст:
С. Ю. Зубкова, к.х.н., ведущий эксперт по анализу масел,
Р. А. Романов, к.т.н., директор по маркетингу и сбыту ООО «БАЛТЕХ» (г. Санкт-Петербург, Россия)