Жидкими телами или жидкостями называют физические тела, легко изменяющие свою форму под действием самой незначительной по величине силы.
Различают два вида жидкостей:
-жидкости капельные (малосжимаемые);
-жидкости газообразные (сжимаемые).
Газообразные жидкости (газы) в отличие от жидкостей капельных заполняют все предоставленное им пространство и изменяют свой объем в зависимости от изменения температуры и давления. Газообразные жидкости, их свойства и применение рассматриваются в специальных дисциплинах – термодинамике и аэромеханике. В гидравлике рассматривается равновесие и движение капельной жидкости, в дальнейшем называемое просто жидкостью. Капельные жидкости представляют собой жидкости в обычном, общепринятом понимании этого слова (вода, нефть, керосин и т. д.)
В гидравлике рассматривают потоки жидкости, ограниченные и направленные твёрдыми стенками, т.е. течение в открытых и закрытых руслах (каналах). Понятие «русло» или «канал» включает поверхности, которые ограничивают и направляют потоки (русла рек, каналов, различные трубопроводы, насадки, элементы гидромашин и другие устройства, внутри которых протекает жидкость).
Основные физические свойства жидкостей
Сжимаемость – способность жидкости или газа под действием внешнего давления изменять свой объём а, следовательно, плотность.
Сжимаемость характеризуется коэффициентом βр объёмного сжатия, который представляет собой относительное изменение объёма, приходящегося на единицу давления, т.е.или м²/Н (1Па).
Капельные жидкости относятся к категории плохо сжимаемых тел, т.к. межмолекулярные расстояния в капельной жидкости малы и при деформации жидкости приходится преодолевать значительные силы отталкивания, действующие между молекулами, и даже испытывать влияние сил, действующих внутри атома. Тем не менее, сжимаемость жидкостей в 5 - 10 раз выше, чем сжимаемость твёрдых тел, т.е. можно считать, что все капельные жидкости обладают упругими свойствами.
Свойство, обратное сжимаемости называется упругостью среды. Характеризуется упругость объёмным модулем упругости Е, величиной обратной коэффициенту βр объёмного сжатия Па, МПа.
Растворение газов - способность жидкости поглощать (растворять) газы, находящиеся в соприкосновении с ней. Все жидкости в той или иной степени поглощают и растворяют газы. Это свойство характеризуется коэффициентом растворимости kр.
Наличие газа растворённого в жидкости может оказывать как благоприятное воздействие (снижается вязкость жидкости, плотность и т.д.), так и неблагоприятные факторы. Выделяющийся газ может оказаться не безопасным для окружающей среды, огнеопасным и взрывоопасным (углеводородный газ). Газ, растворённый в жидкости, как и газ в свободном состоянии может также способствовать коррозии стенок труб и оборудования, вызывать химические реакции, ведущие к образованию отложений твёрдых солей на стенках труб, накипей и др.
Кипение – способность жидкости переходить в газообразное состояние. Иначе это свойство жидкостей называют испаряемостью.
При понижении давления в жидкости происходит выделение растворенного в ней газа, который затем испаряется. Интенсивность процесса парообразования зависит от температуры кипения жидкости при нормальном атмосферном давлении: чем выше температура кипения жидкости, тем меньше её испаряемость. Характеристикой испаряемости является давление насыщенных паров рн.п.: чем выше температура, тем больше давление насыщенного пара жидкости.
В результате понижения давления в жидкости до давления рн.п. при определенной температуре в ней образуются пузырьки, заполненные парами жидкости и газа, которые выделились из жидкости. Кипение жидкости может возникнуть в результате понижения давления при существенно меньшей температуре кипения t = 100 °С. Такое кипение получило название «холодное кипение».
Вязкость представляет собой свойство жидкости сопротивляться сдвигу её слоёв и проявляется в результате её движения. Вязкость есть свойство противоположное текучести: более вязкие жидкости (глицерин, смазочные масла и т.д.) являются менее текучими, и наоборот.
При течении вязкой жидкости вдоль твёрдой стенки происходит торможение потока, обусловленное вязкостью. Скорость u уменьшается по мере уменьшения расстояния y от стенки вплоть до u =0 при y =0, а между слоями происходит проскальзывание, сопровождающееся возникновением касательных напряжений, так называемых напряжений трения.
Вязкость капельной жидкости зависит от температуры и уменьшается с увеличением последней. Вязкость газов, наоборот, с увеличением температуры возрастает. Объясняется это различием природы вязкости в жидкостях и газах. В жидкостях молекулы расположены гораздо ближе друг к другу, чем в газах, и вязкость вызывается силами молекулярного сцепления. Эти силы с увеличением температуры уменьшаются, поэтому вязкость падает. В газах же вязкость обусловлена беспорядочным тепловым движением молекул, интенсивность которого увеличивается с повышением температуры. Поэтому вязкость газов с увеличением температуры возрастает.
Выбор рабочей жидкости для гидросистем
Существенное значение при выборе рабочей жидкости имеют:
— температура вспышки, температура застывания, окисляемость
Рабочие жидкости, используемые в машиностроении, делят на 3 вида:
а) Минеральные масла (произведенные на основе нефти). Получают из нефти обычными методами переработки. В гидроприводах используют: масло гидравлическое единое МГЕ-10А, авиационное гидравлическое масло АМГ-10, всесезонное гидравлическое масло ВМГ3 и др.
б) Синтетические жидкости (жидкости, основу которых составляют продукты в результате химических реакций) – диэфиры, силоксаны, фосфаты.
Как правило, они не горючи, стойки к окислению, имеют низкую температуру застывания и обладают стабильной вязкостью. Водополимерные растворы – рабочие жидкости, представляющие водный раствор различных полимеров. Например ПГВ – водный раствор глицерина и полиэтиленгликоля.
в) Водные эмульсии («масло в воде» и «вода в масле»). Водомасляные эмульсии представляют собой смеси воды и нефтяных жидкостей. Масловодяные эмульсии представляют собой смеси нефтяной жидкости и воды.
Рабочие жидкости в гидросистемах выполняют следующие функции:
— является смазочной средой;
— является теплоносителем;
— является промывочной средой;
— является средством консервации (защищает поверхности от коррозии);
— является передатчиком энергии движения жидкости.
Для рабочих жидкостей, применяемых в гидроприводах, характерны следующие эксплуатационные свойства (требования):
- хорошие вязкостные свойства; малая плотность;
- минимальная зависимость вязкости от температуры в требуемом диапазоне;
- малая сжимаемость жидкости; большой срок сохраняемости;
- низкая температура застывания;
- высокая термостойкость; стойкость к окислению на воздухе;
- отсутствие воды и механических примесей;
- хорошие смазывающие, моющие и консервационные свойства;
- хорошие охлаждающие свойства; малая токсичность;
- высокие экономические показатели.
Перечисленные свойства рабочих жидкостей неравноценны, поэтому в каждом конкретном случае при выборе жидкости исходят из наиболее важных из них.