Очередная волна эпидемии коронавируса (теперь уже пандемии) принесла и очередную волну публикаций, посвященных опасностям нового вируса со страшными предсказаниями и графиками.
Поднявшаяся паника подействовала и на меня, но сопротивляясь ей из последних сил, я попытался найти для себя ответы на некоторые вопросы, которые обошли вниманием другие авторы, но кажутся мне важными, или хотя бы прояснить, действительно ли миру и мне угрожает смертельная опасность, и что с этим можно сделать.R0 и скорость эпидемии
Чего уж проще – взять и прочитать определение, что такое R0, и убедиться, что этот показатель никак не связан со скоростью реальной эпидемии, но является всего лишь искусственным параметром конкретной математической модели. Тем не менее базовое репродуктивное число склоняют во всех падежах при любом удобном моменте, когда хотят сказать об опасности той или иной инфекции, как только его не называя – индексом контагиозности (такой существует, но означает совсем другое), уровнем заразности инфекции и т. д. Но ведь это не так, у R0 есть вполне определенное значение и для этого и нужно применять, а не для красного словца.
Что точно – если модель заболеваемости соответствует R0 < 1, то эпидемия не начнется, а если началась, то пойдет на спад, ведь если в среднем каждый больной будет генерировать меньше 1 нового больного, рано или поздно «последний больной» не передаст болезнь никому. Поэтому R0 можно и нужно уменьшать, ведь основное определение таково:
R0 = βγ, где
β – количество контактов, приводящих к новым больным, за определенное время;
γ – период, на протяжении которого болеющий контактирует со здоровыми.
Например, если больной заражает в среднем 1 нового человека за 1 день контактирования с другими людьми, и делает это в среднем на протяжении 5 дней, пока его не выявят и изолируют, R0 этого конкретного заболевания в конкретной среде будет равен 5, так как он успеет сгенерировать 5 новых случаев.
Конечно, точных значений R0 нет и не может быть, поскольку математические модели являются только приближением к реальному процессу, но это значение позволяет понять, будет ли распространяться заболевание в виде эпидемии в каком-то конкретном регионе при тех или иных условиях.
Повторюсь, оценить не скорость эпидемии, а оценить, возможна ли эпидемия. R0 коронавируса по оценкам нескольких источников точно больше 1, следовательно, если ничего не предпринимать для его уменьшения, эпидемия возможна, что мы и наблюдаем.
И вот тут самое важное следствие – чтобы уменьшить R0, нужно выполнить одно или несколько условий:
Пункт 1. Уменьшить количество контактов больных с другими людьми – изолировать точно болеющих и помещать на карантин подозрительных.
Пункт 2. Уменьшить период контактирования больного с другими людьми – быстрее выявлять болеющих и далее действовать по п. 1.
Но есть важный нюанс:
β – это произведение количества контактов на индекс контагиозности (attack rate) – реальный показатель конкретной инфекции или патогена – процент заболевших от числа контактировавших с больным ли носителями инфекции, характерный именно для данного заболевания (обычно определяется из практики).
То есть β будет тем больше, чем больше контагиозность заболевания и чем с большим количеством здоровых непривитых людей пообщается больной.
Например, контагиозность кори оценивается в 50-90%, то есть из 10 человек, контактировавших с больным, заболеют больше половины. Например, если в среднем с больным будут общаться 5 людей ежедневно, то каждый день будет появляться в среднем 3-4 заболевших (β = 5 х 0,5–0,9 = 2,5–4,5), а если в среднем больного корью будут изолировать через 3 дня (γ = 3), всего появится около от 8 до 14 новых больных (R0 = βγ = 2,5–4,5 х 3). Так мы получим R0 кори, равный 8-14.
При этом если объявить карантин и тем самым снизить количество общающихся с больным до 2 людей ежедневно, то за те же 3 дня «общения» появится всего 3-5 новых больных (2 х 3 х 0,5–0,9), то есть R0 в такой модели распространения станет ниже 5, но будет все еще выше 1.
Чтобы добиться снижения R0 до значения меньше 1, нужно ограничить количество контактов с больным до максимум 1 за 3 дня, за которые больного изолируют – (1 х 0,9 = 0,5–0,9) или сильно уменьшить время от момента выявления до изоляции больного – до нескольких часов и меньше, тем самым снизив вероятность и количество контактов с другими людьми.
У легочной чумы контагиозность на уровне кори – 80%, но при этом R0 чумы (6-7) намного ниже R0 кори (14-15) – потому, что инкубационный период чумы ниже, чем у кори, а также потому, что период, когда больной заразен, при чуме короче и заметнее по симптомам, а значит, пообщаться с больным и заразиться весь период, пока больного не изолируют, успевают меньшее количество людей.
Как видно, между R0 и контагиозностью существует некоторое соответствие, но совсем не прямое, да и пугаться стоит не болезней с высоким R0, а болезней с высокой летальностью, даже если их R0 небольшой. У той же Эболы R0 = 2, а летальность достигает 90%. По сравнению с ней нынешний коронавирус – легкая простуда.
У коронавируса SARS-CoV-2 (новое название 2019-nCoV), вызывающего COVID-19, контагиозность намного ниже, чем у чумы и кори (оценочно 3-10% в домашних условиях), но есть другая проблема – длительный инкубационный период, на протяжении которого больной может быть распространителем.
Именно это обстоятельство сильно повышает β, а значит, и R0, повышая тем самым вероятность эпидемии – врачи бы и рады быстро изолировать больных или поместить в карантин предположительно больных, да вот находят их уже тогда, когда они успели неделю или больше пообщаться со здоровыми и заразить их.
Большие скопления людей тоже сильно повышают вероятность заражения, если среди всех присутствующих есть хотя бы один больной, что показывает история с суперраспространителем в Южной Корее – одна женщина за несколько дней побывала в нескольких общественных местах, проконтактировав с более чем 1000 человек.
Вывод – в идеале нужен глобальный карантин, который максимально уменьшит количество контактов людей друг с другом и позволит больным дождаться явных симптомов заболевания с минимальным количеством контактов.
На практике это, конечно, трудноосуществимо, поэтому применяется частичный карантин, исходя из условий распространения конкретного заболевания. Кстати, карантин в детских садах в случае с коронавирусом, возможно, излишен, так как по статистике среди заболевших всего около 1% детей до 7 лет, в отличие от той же кори и ОРВИ, при которых дети являются основной группой заболевших, а значит, и основными переносчиками инфекции.
Когда еще имеет смысл упоминать R0 – если нужно оценить, например, какой процент населения нужно вакцинировать, чтобы предупредить развитие эпидемии, например, для кори с оценочным R0 около 15 нужно вакцинировать, соответственно, не меньше (100 – 100/15)% населения – 93,3%. Но опять же, это цифры по какой-то модели, реальность такова, что в некоторых странах с высоким процентом вакцинации все же случаются вспышки кори, хотя до эпидемий дело, действительно, не доходит – такая оценка, получается, работает.
Что с коронавирусом? Оценочный R0 по разным моделям – от 2 до 4 примерно, то есть вакцинировать нужно хотя бы 50-75% населения. Вакцины, как мы знаем, нет, и в ближайшем будущем не предвидится, так что про это применение R0 можно пока не вспоминать.
Единственное — если бы можно было быстро оградить пожилых людей («отправить бабушку в деревню до осени»), то карантин вообще бы можно было не вводить — все молодые люди успели бы переболеть, необходимый процент получил бы иммунитет, и распространение вируса прекратилось бы, как если бы всех этих людей привили. Именно продолжительное время для создания вакцины мешает быстро пресечь эпидемии новых заболеваний.
Для тех, кому совсем интересно – пример расчета R0 нового коронавируса китайскими учеными.
Реальная скорость эпидемии
Сначала прикинем «идеальный» сценарий, чтобы было от чего отталкиваться – каждый больной на следующий день заражает количество людей, равное R0 (такого не бывает, конечно, но чтобы увидеть разницу с реальностью, нужно увидеть самый страшный сценарий).