Продолжаем решать задачи по основам электротехники(ТОЭ). В сегодняшней статье будет метод, по которому задают больше всего вопросов. Это понятно, поскольку этот метод является, на мой взгляд, самым сложным методом расчета сложных электрических цепей постоянного тока.
В свое время и я его понял далеко не сразу. Поэтому рассмотрим каждый пункт подробно. Начнём с того, что необходимо знать и понимать для успешного решения этим методом.
1) Закон Ома. Без него не только этот метод, но и многие другие задачи не решаются.
2) Правила последовательного и параллельного соединения резисторов.
3) Хотя бы один любой метод расчета сложных цепей, то есть по Кирхгофу, контурными токами, узловыми потенциалами и так далее.
4) И, самое важное, для этого метода - это умение строить потенциальную диаграмму. Именно потенциальную, а не векторную. Потому что векторная диаграмма строится для цепей переменного тока, а мы рассматриваем цепь постоянного тока. Строить мы конечно потенциальную диаграмму тут не будем. Но чтобы её построить, необходимо знать два основных правила, которые нужны и в методе эквивалентного генератора.
Первое правило: ток течет через резистор всегда от большего потенциала к меньшему.
Второе правило: у ЭДС "+" всегда больше "-".
Давайте перейдем к решению задачи. На конкретном примере всегда понятнее.
Имеется данная схема цепи. Даны ЭДС и сопротивления резисторов. Требуется найти ток I3 методом эквивалентного генератора.
Поскольку нужно найти ток I3, который протекает по третьей ветви, нам нужно обеспечить холостой ход, сделав обрыв той части цепи, по которой протекает интересующий нас ток. То есть делаем обрыв третьей ветви. Это ветвь подключена между точками "c" и "d". Сами точки мы не трогаем, а лишь убираем только ветвь.
В точках "c" и "d" узлов нет, поскольку там сходятся только по две ветви. А узел - это место соединения трех и более ветвей.
Наша цель - определить две величины:
1) Напряжение Ucd между точками "c" и "d", оно же ЭДС эквивалентного генератора(Еэг). И, поскольку, мы обеспечили холостой ход, оборвав третью ветвь, все токи и напряжения будем указываем на схеме с индексом "х", при коротком замыкании указывают кз.
2) Сопротивление эквивалентного генератора rэг, оно же сопротивление между точками "c" и "d". А определить это сопротивление нам поможет правило последовательного и параллельного соединения резисторов.
В первом случае, когда мы ищем напряжение Ucd(оно же Еэг), применим один любой метод расчета сложных электрических цепей.
Сложной считается цепь, если в ней два и более источников энергии.
В данном случае два источника. Давайте для начала найдём, каким будет напряжение между точками "c" и "d". Воспользуемся методом контурных токов.
Получили два неизвестных контурных тока. В цепи, в общем случае, три ветви и два узла. Поскольку две неизвестные, значит составим два уравнения и из этих уравнений найдём контурные токи I11 и I22.
Напряжение Ucd снимается с точек "c" и "d", а между ними включены резисторы r2 и r4. Нам остается найти напряжение на этих элементах. Их сопротивления известны. Найдем токи I4 и I2, умножим эти токи на сопротивления, получим напряжения.
Контурные токи мы уже нашли. Тогда токи ветвей:
I2x=-I22=0.3333 A; I4x=-I11=0.2222 A;
Напряжения на резисторах r4 и r2:
U4x=I4x*r4=0.2222*4=0.8888 B; U2x=I2x*r2=0.3333*2=0.6666 B;
Так как оба тока направлены в одну и ту же сторону, тогда
Ucdx=U2x+U4x=0.6666+0.8888=1.5554 B;
А теперь самое главное в этом методе. Почему именно взяли U2 + U4? Почему не -U2-U4? А здесь нужно воспользоваться правилом, что ток течет от большего потенциала к меньшему и стрелкой под напряжением Ucdx мы указали, что φс больше чем φd. А так как нам нужно найти ЭДС эквивалентного генератора, давайте представим именно эту часть схемы отдельно.
Предположим, что φc больше чем φd и стрелкой под напряжением укажем направление от большего потенциала к меньшему.
Заменим напряжение Ucd на Eэг. Еэг будет направлен от "d" к "c"(минусом на "d", а плюсом на "c", потому что "плюс" у ЭДС всегда больше чем "минус").
Запишем второй закон Кирхгофа:
I4x*r4+I2x*r2=-Еэг
В данном случае ЭДС эквивалентного генератора Еэг получится отрицательным. Можно в принципе оставить как есть, это ошибкой не будет. Но если мы на данном этапе поменяем направление ЭДС эквивалентного генератора на этой схеме, тогда мы получим положительное значение ЭДС эквивалентного генератора. Или оставляем как есть. Как поступить - без разницы. Давай поменяем направление.
Тогда I4x*r4+I2x*r2=Еэг; Еэг=U4x+U2x=0.8888+0.6666=1.5554 B;
Это говорит о том, что потенциал в точке "d" большие чем в точке "с". Это и так изначально было понятно cудя по тому, как мы направили токи. А ток течет от большего потенциала к меньшему, т. е. мы изначально указали точки от "d" к "e" и от "e" к "c" и эти токи получились положительными. Значит мы их верно расставили.
С ЭДС эквивалентного генератора мы разобрались, осталось посчитать сопротивление эквивалентного генератора (сопротивление между точками "c" и "d"). Для этого мы должны исключить все источники энергии и оставить только резисторы.
Когда исключаем ЭДС, на его месте остается короткое замыкание (это в случае если источник напряжения идеальный и его внутреннее сопротивление равно нулю). Если имеется какое-то внутреннее сопротивление, то оно остается в ветви, это нужно учитывать. Если в схеме цепи есть источник тока, то после его исключения на его месте остается обрыв, поскольку его внутреннее сопротивление бесконечно большое. А после исключения источника тока, его внутреннее сопротивление остается в схеме, и так как оно бесконечно большое, это равносильно обрыву.
В схеме, изображенной на рисунке 9, применяя правила последовательного и параллельного соединения резисторов:
r4 и r5 включены параллельно;
r1 и r2 включены параллельно;
r45 и r12 включены последовательно;
Численные значения r45, r12 и rэг рассчитаны на рисунке 9.
Осталось изобразить последнюю схему, в которой будет протекать ток I3.
Ток получился отрицательным, значит на самом деле он течет не вправо, а влево от "d" к "c". Это и понятно, поскольку, как мы ранее выяснили, φd больше чем φc, и, повторюсь, ток течет от большего потенциала к меньшему.
Таким образом решаются задачи методом эквивалентного генератора.
Если понравилась статья, подписывайтесь на канал и не пропускайте новые публикации.
Читайте также:
1. Как электроэнергия передается от электростанций до наших домов;
2. Что такое электрический ток - простыми словами;