Аварийные расчетные ситуации для предварительно напряженных вантовых конструкций железнодорожных мостов. Формирование прогрессирующего обрушение железнодорожных мостов при сейсмических воздействиях и увеличения демпфирующей способности при импульсных растягивающих нагрузках, предварительно напряженных вантовых конструкции по изобретениям №№ 2193635, 2406798,1143895, 1168755, 1174616,165076 «Опора сейсмостойкая» и опыт применения и реализация в программном комплексе SCAD Office
https://yadi.sk/d/Hz55StNQOJr2Pg https://ppt-online.org/825043
Emergency design situations for prestressed cable-stayed structures of railway bridges. Formation of progressive collapse of railway bridges under seismic impacts and increase in damping capacity under pulsed tensile loads, prestressed cable-stayed structures according to the inventions №№ 2193635, 2406798,1143895, 1168755, 1174616,165076 "seismic Support" and experience in application and implementation in the SCAD Office software package
Авторы: Малафеев Олег Иванович, Андреева Елена Ивановна, Кадашов Александр Иванович
Испытательного центра СПбГАСУ, аккредитован Федеральной службой по аккредитации (аттестат № RA.RU.21СТ39, выдан 27.05.2015), ОО "Сейсмофонд" ОГРН: 1022000000824 4 ИНН 2014000780
Автор отечественных конструктивных решений по теоретическим исследованиям антисейсмического фрикционно демпфирующего компенсатора соединения для увеличения демпфирующей способности при импульсных растягивающих нагрузках для обеспечения многокаскадного демпфирования с использованием антисейсмических фрикционно- демпфирующих опор, с зафиксированными запорными элементов в штоке, по линии ударной нагрузки, согласно изобретения № 165076 «Опора сейсмостойкая» и антисейсмических решений на фрикционо- демпфирующих связей (устройствах) , автор демпфирующей сейсмоизоляции и системы поглощения и рассеивания сейсмической и взрывной энергии, внедренной в США, американской фирмой “STAR SEISMIC” https://madisonstreetcapital.com/select-transaction-7 и Канадской фирмой QuakeTek проф дтн ПГУПC Уздин А. М https://www.quaketek.com/products-services/
УДК 699.841: 624.042.7 СПб ГАСУ № RA.RU.21СТ39 от 27.05.2015, 190005, СПб, 2-я Красноармейская ул. д 4, тел (921) 962-67-78
Инж –мех ЛПИ им Калинина Е.И.Андреева , зам президента организации «Сейсмофонд» ОГРН : 1022000000824 ИНН 2014000780
( ШИФР 1.010.1-2с.94, выпуск 0-1, утвержден Главпроектом Мистрой России, письмо от 21.09.94 ; 9-3-1/130 за подписью Д.А.Сергеева, исп. Барсуков 930-54-87 согласно письма Минстроя № 9-3-1/199 от 26.12.94 и письма № 9-2-1/130 от 21.09.94 )
Организации «Сейсмофонд» ОГРН : 1022000000824 ИНН 2014000780
DESIGN SCHEME of an oblique, square, tubular, cross-shaped anti-seismic friction-damping compensator (connection), to increase the damping capacity under pulsed tensile loads, to provide multi-stage damping of prestressed cable-stayed structures according to the inventions №№ 2193635, 2406798,1143895, 1168755, 1174616,165076 "seismic Support" and experience in application and implementation in the SCAD Office software package
Авторы: Аубакирова Ирина Утарбаевна, Малафеев Олег Иванович, Андреева Елена Ивановна, Кадашов Александр Иванович
Антисейсмические косые компенсаторы и демпфирующие связи и конструктивных решений на прогрессирующее лавинообразное обрушение при особых воздействияхна магистральный трубопровод с использованием противовзрывных , анисейсмических, фрикционно –демпфирующих связей (устройств) , в среде вычислительного комплекса SCAD Office ПРИ ВОССТАНОВЛЕНИИ, РАЗРУШЕНЫХ СООРУЖЕНИЙ ПРИ особых воздействиях (обстрелах ) например в Нагороном Карабахе ( Армения) за счет использования трения , рассеивающей взрывной или сейсмической энергии с использованием фрикционно-демпфирующих связей репатрианта из Израиля на Украину Кагановского ( Новые конструктивные решения антисейсмической демпфирующей связи Кагановского http://www.elektron2000.com/article/1404.html ) и с демпфирующей сейсмоизоляции и антисейсмических фрикционных демпфирующих связей (соединений) рамных узлов металлических конструкций на прогрессирующее (лавинообразное ) обрушение и их программная реализация в SCAD Office могут быть использоваться :
:
1. При восстановление магистрального трубопровода или усиление существующих железнодорожных мостов , с демпфирующей сейсмоизоляцией на высокопрочных болтов, содержащие последовательно соединенные пакеты деталей с овальными отверстиями, большей оси которые расположены вдоль оси соединения по линии нагрузки , согласно изобретения №№ 1168755, 1174616, 1143895, 165076, 2010136746 при восстановлении и реконструкции сооружений в районах с повышенной сейсмичностью с металлическим и железобетонным каркасом.
2. В существующих и вновь проектируемых магистральных трубопроводах и сооружениях России , необходимо использовать высокопрочные болты, содержащие последовательно соединенные пакеты деталей с овальными отверстиями, большей оси которые расположены вдоль оси соедиения по линии нагрузки , согласно изобретения №№ 1168755, 1174616, 1143895, 165076, 2010136746.
3. В высотных зданиях и сооружениях от особого воздействия ( обстрелы ) и от взрывных нагрузках .
4. Для крепления эксплуатируемого оборудования и агрегатов электростанций, магистральных трубопроводов, линий электропередач , в том числе атомных, от сейсмических нагрузок и взрывов.
5. Для крепления магистрального трубопровода необходимо использовать косой компенсатор на высокопрочных болта, содержащие последовательно соединенные пакеты деталей с овальными отверстиями, большей оси которые расположены вдоль оси соединения по линии нагрузки , согласно изобретения №№ 1168755, 1174616, 1143895, 165076, 2010136746
6. Для крепления оборудования и агрегатов морских кораблей при продольной и поперечной качке, необходимо использовать высокопрочные болты, содержащие последовательно соединенные пакеты деталей с овальными отверстиями, большей оси которые расположены вдоль оси соединения по линии нагрузки , согласно изобретения №№ 1168755, 1174616, 1143895, 165076, 2010136746
7. Для крепления рекламных щитов от взрывных и ветровой нагрузки, так же необходимо использовать высокопрочные болты, содержащие последовательно соединенные пакеты деталей с овальными отверстиями, большей оси которые расположены вдоль оси соединения по линии нагрузки , согласно изобретения №№ 1168755, 1174616, 1143895, 165076, 2010136746
Ссылки наших партнеров в США, Канаде, Японии , которые успешно внедряют изобретения проф. дтн ЛИИЖТ (ПГУПС) Уздина Александра Михайловича для железнодорожных мостов и магистральных трубопроводов : косоге, квадратные, трубчатые , крестовидные антисейсмические о фрикционно- демпфирующего компенсаторы ( соединения), для увеличения демпфирующей способности при импульсных растягивающих нагрузках, для обеспечения многокаскадного демпфирования предварительно напряженных вантовых конструкции по изобретениям №№ 2193635, 2406798,1143895, 1168755, 1174616,165076 «Опора сейсмостойкая» американской фирмой “STAR SEISMIC” https://madisonstreetcapital.com/select-transaction-7 и Канадской фирмой QuakeTek проф дтн ПГУПC Уздин А. М https://www.quaketek.com/products-services/ , Японской фирмой Kowakin и другими в Новой Зеландии, Тайване , Китае, Украине, Казахстане , Грузии, Армении, Азербайджане
Seismic resistance GD Damper
https://www.youtube.com/watch?v=I4YOheI-HWk&t=5s
https://www.youtube.com/watch?v=CIZCbPInf5k
https://www.youtube.com/watch?v=ZRJcowT24I8&t=1s
https://www.youtube.com/watch?v=bFjGdgQz1iA
Seismic Friction Damper - Small Model
QuakeTek
https://www.youtube.com/watch?v=YwwyXw7TRhA
https://www.youtube.com/watch?v=ViGHmWVvEkU&t=2s
https://www.youtube.com/watch?v=oT4Ybharsxo
Earthquake Protection
Damper
https://www.youtube.com/watch?v=GOkJIhVNUrY&t=2s
Ingenier?a S?smica B?sica explicada con marco did?ctico QuakeTek
QuakeTek
https://www.youtube.com/channel/UCCGoRHfZQlJ8cwdGJxOQgLQ
https://www.youtube.com/watch?v=aSZa--SaRBY&t=2s
Friction damper for impact absorption
DamptechDK
https://www.youtube.com/watch?v=pkfnGJ6Q7Rw&t=5s
https://www.youtube.com/watch?v=EFdjTDlStGQ
https://www.youtube.com/watch?v=NRmHBla1m8A
ВЫВОДЫ по испытанию математических моделей резервуаров из полиэтилена «Гермес Групп» (ТУ 2291-008-69211495-2014)с трубопроводами из полиэтилена (трубопроводы крепятся к резервуарам с помощью фрикционных протяжных демпфирующих компенсаторов с контролируемым натяжением, с контролируемым натяжением, обеспечивающих многокаскадное демпфирование при импульсной динамической растягивающей нагрузке(предназначены для работы в сейсмоопасных районах с сейсмичностью до 9 баллов по шкале MSK-64) и их программная реализация в SCAD Office.
Резервуары из полиэтилена с трубопроводами из полиэтилена, предназначенные для сейсмоопасных районов с сейсмичностью до 9 баллов, серийный выпуск (повышение сейсмостойкости резервуаров с трубопроводами из полиэтилена осуществляется за счет применения в районах с сейсмичностью 8 баллов и более косых антисейсмических компенсаторов для соединения труб с резервуаром на демпфирующих фрикционно–подвижных соединениях, с контролируемым натяжением, расположенных в длинных овальных отверстиях для обеспечения многокаскадного демпфирования при динамических нагрузках (преимущественно при импульсных растягивающих нагрузках в узлах соединения ), ( ГОСТ Р 55989-2014) по ГОСТ 15150, ГОСТ 5264-80-У1- 8, СП 73.13330 (п.п.4.5, 4.6, 4.7); СНиП 3.05.05 (раздел 5), согласно изобретениям №№ 1143895, 1174616,1168755 № 165076 «Опора сейсмостойкая», согласно рекомендациям ЦНИИП им. Мельникова, ОСТ 36-146-88, ОСТ 108.275.63-80, РТМ 24.038.12-72, ОСТ 37.001. -050- 73,альбома 1-487-1997. 00.00 и изобрет. №№ 4,094,111 US, TW201400676 Restraintanti-windandanti-seismic-friction-damping-deviceМкл E04H 9/02, в местах подключения трубопроводов к резервуарам трубопроводы должны быть уложены в виде "змейки" или "зиг-зага"согласно ГОСТ 15150, ГОСТ 5264-80-У1- 8, СП 73.13330 (п.п.4.5, 4.6, 4.7); СНиП 3.05.05 (раздел 5)) СООТВЕТСТВУЮТТРЕБОВАНИЯМ НОРМАТИВНЫХ ДОКУМЕН-ТОВ ГОСТ 15150, ГОСТ 5264-80-У1- 8, ГОСТ 30546.1-98, ГОСТ 30546.2-98, ГОСТ 30546.3-98 (при сейсмических воздействиях 9 баллов по шкале MSK-64 включительно ), ГОСТ 30631-99, ГОСТ Р 51371-99, ГОСТ 17516.1-90, МЭК 60068-3-3 (1991), ПМ 04-2014, РД 26.07.23-99 и РД 25818-87, СП 14.13330.2018, СП 73.13330 (п.п.4.5, 4.6, 4.7); СНиП 3.05.05 (раздел 5)
Испытания математических моделей резервуара из полиэтилена с креплением трубопровода с помощью фрикционных протяжных демпфирующих компенсаторов с контролируемым натяжением, обеспечивающих многокаскадное демпфирование при импульсной динамической растягивающей нагрузке (предназначены для работы в сейсмоопасных районах с сейсмичностью до 9 баллов по шкале MSK-64) и фрикционно-подвижных соединений ФПС и их программная реализация в SCAD Office согласно проекта сейсмической шкалы проводились по прогрессивному методу испытания зданий и сооружений как более новому. Для практического применения фрикционно-подвижных соединений (ФПС) после введения количественной характеристики сейсмостойкости надо дополнительно испытать узлы ФПС. Проведены испытания математических моделей в программе SCAD. Процедура оценок эффекта и обработки полученных данных существенно улучшена и представляет собой стройный алгоритм, обеспечивающий высокую воспроизводимость оценок и гарантирующий независимость от эмоционального состояния наблюдателя. Апробация основных положений использования ФПС и ДУК со шкалой производилась на опыте землетрясений в Спитаке, Дагестане и некоторых землетрясений в других странах.
Испытание математических моделей допускается со шкалой землетрясений Апликаева (определение интенсивности землетрясений по значительно расширенному кругу объектов при различной обеспеченности данными). Шкала также создает основу для оценки и уменьшения возможного уровня воздействий будущих землетрясений заданной бальности.
При испытании моделей резервуара из полиэтилена«Гермес Групп» (ТУ 2291-008-69211495-2014) с креплением трубопровода из полиэтилена с помощью фрикционных протяжных демпфирующих компенсаторов с контролируемым натяжением, обеспечивающих многокаскадное демпфирование при импульсной динамической растягивающей нагрузке(предназначены для работы в сейсмоопасных районах с сейсмичностью до 9 баллов по шкале MSK-64) оценено влияние продолжительности колебаний на сейсмическую интенсивность. За полвека количество записей и перемещения грунта резко увеличилось, что позволило существенно повысить точность испытания математических моделей в ПК SCAD согласно инструментальной шкалы и оценить величину стандартных отклонений.
Корреляция инструментальных данных о параметрах сейсмического движения грунта с использованием сейсмоизолирующих опор с использованием ФПС должно уменьшить повреждаемость фрикционно–подвижных соединений (ФПС) для резервуаров из полиэтилена с креплением трубопровода из полиэтилена с помощью фрикционных протяжных демпфирующих компенсаторов с контролируемым натяжением,, обеспечивающих многокаскадное демпфирование при импульсной динамической растягивающей нагрузке, с учетом зарубежного опыта в КНР, Новой Зеландии, Японии, Тайваня, США в части широкого использования сейсмоизоляции, ФПС, демпфирования.
Приложение список перечень заявок на изобретения и научных публикаций в журналах СПб ГАСУ о демпфирующих сдвиговых энернопоглотителях, для обеспечения устойчивости существующего лестничных маршей и сооружений от особых воздействий, можно ознакомится по ссылкам:
Описание изобретения на полезную модель Сейсмостойкая фрикционно 18 стр https://yadi.sk/i/JZ0YxoW0_V6FCQ
Заявка на изобретение полезную модель Энергопоглощающие дорожное барьерное ограждение 23 стр https://yadi.sk/d/dWKraP12fvXAlA
Описание изобретения на полезную модель Взрывостойкая лестница 10 стр https://yadi.sk/i/EDoOs4AFUWKYEg
Заявка на изобретение полезная модель Опора сейсмоизолирующая гармошка 20 стр https://yadi.sk/i/JOuUB_oy2sPfog
Заявка на полезную модель Опора сейсмоизолирующая маятниковая 32 стр https://yadi.sk/i/Ba6U0Txx-flcsg
Виброизолирующая опора Е04Н 9 02 РЕФЕРАТ изобретения полезная 17 стр https://yadi.sk/i/dZRdudxwOald2w
Обеспечение взрывостойкости существующих железнодорожных мостов на основе 15 стр https://yadi.sk/i/en6RGTLgfhrg_A
Доклад в СПб ГАСУ усиление опор Крымского моста https://yadi.sk/i/RpW2sh5lMdx35A
Скачать научную статью Сейсмофонд при СПб ГАСУ( опубликованную в США, Японии и др странах ), можно по ссылке : Использование лего сбрасываемых конструкций для повышения сейсмостойкости сооружений http://scienceph.ru/f/science_and_world_no_3_43_march_vol_i.pdf
Изобретения с демпфирующей сейсмоизоляций «Сейсмофонд» широк используются американской фирмой RUBBER BEARING FRIKTION DAMPER (RBFD) в Японии, Новой Зеландии, США, Китае, Тайване и др странах https://www.damptech.com/-rubber-bearing-friction-damper-rbfd https://www.damptech.com/for-buildings-cover
http://downloads.hindawi.com/journals/sv/2018/5630746.pdf
https://www.youtube.com/watch?v=r7q5D6516qg
Теория сейсмостойкости находится в кризисе, а жизнь миллионов граждан проживающих в ЖБ гробах не относится к государственной безопасности http://www.myshared.ru/slide/971578/
https://yadi.sk/i/JfXt8hs_aXcKRQ https://yadi.sk/i/p5IgwFurPlgp1w
Оценка возможности инициирования сейсмического геофизического и техногенного оружия с применением существующих технических средств и технологий https://yadi.sk/i/3VmQxa78RhhBBA
ГОСТ 6249-52 «Шкала для определения силы землетрясения в пределах от 6 до 9 баллов»
http://scaleofintensityofearthquakes.narod.ru http://scaleofintensityofearthquakes2.narod.ru
http://scaleofintensityofearthquakes3.narod.ru http://peasantsinformagency1.narod.ru
http://s-a-m-a-r-a-citi.narod.ru http://sergeyshoygu.narod.ru/pdf1.pdf
Обеспечение взрывостойкости существующих железнодорожных мостов на основе 15 стр https://yadi.sk/i/en6RGTLgfhrg_A
Патенты изобретения взрывозащите противовзрывная https://yadi.sk/i/-PwJxeHVvI_eoQ
Научный доклад на 67 конференции СПб ГАСУ 4 стр https://yadi.sk/i/sMuk8V-J0Ui_lw
Научная статья в журнале СПб ГАСУ https://yadi.sk/i/Vf_86hLPmeYIsw
Доклад на конференции изобретателей Попов ЛПИ Политех 5 стр https://yadi.sk/i/c1D-6wvsIeJWnA
Антисейсмическое фланцевое фрикционн 4 стр https://yadi.sk/i/pXaZGW6GNm4YrA
Обеспечение взрывостойкости существующих лестничных маршей 8 стр https://yadi.sk/i/ZJNyX-y0gsfEyQ
Доклад сообщение научное Испытание математических моделей ФПС 60 стр + выводы https://yadi.sk/d/6lNXCB4lw-HgpA
Научная статья доклад сообщения конференции с 5 по 7 февраля 2014 19 стрhttps://yadi.sk/i/CnFN36oKLYPpzQ
Научное сообщение доклад на 67 конференции проходившей в начале 3 5 февраля 2010 г в СПб ГАСУ стр 208 стр 211 2 страницы https://yadi.sk/i/MaKtKmd5GP9ecw
Доклад сообщение Маживеа Уздина Испытание математических моделей на сейсмостойкость 137 стр https://yadi.sk/d/MDvdSPojHUpe3w
ЛИСИ Научные статьи изобретателя СПбГАСУ научной конференции 9 стр https://yadi.sk/i/uLbA_SwO5GHO2w
Используемая литература при испытаниях численным моделированием в ПК SCAD креплений узлов и фрагментов крепления предохранительного дорожного барьера ( изобретение № 1622494, Грузия ) с использованием антисейсмических фрикционно- демпфирующих опор с зафиксированными запорными элементов в штоке, по линии ударной нагрузки от груженого самосвала, автобуса согласно изобретения № 165076 «Опора сейсмостойкая» и испытаниях на сейсмостойкость выравнивающейся сейсмоизоляции
1 СПОСОБ ЗАЩИТЫ ЗДАНИЯ И СООРУЖЕНИЯ ПРИ ВЗРЫВЕ С ИСПОЛЬЗОВАНИЕМ СДВИГОУСТОЙЧИВЫХ И ЛЕГКОСБРАСЫВАЕМЫХ СОЕДИНЕНИЙ, ИСПОЛЬЗУЮЩИЕ СИСТЕМУ ДЕМПФИРОВАНИЯ ФРИКЦИОННОСТИ И СЕЙСМОИЗОЛЯЦИЮ ДЛЯ ПОГЛОЩЕНИЯ ВЗРЫВНОЙ И СЕЙСМИЧЕСКОЙ ЭНЕРГИИ" № 2010136746 E 04 C 2/09 Дата опубликования 20.01.2013
2. Патент на полезную модель № 165 076 " Опора сейсмостойкая" 10.10.2016 Б.л 28
3. Патент на полезную модель № 154506 "Панель противовзрывная" 27.08.2015 бюл № 28 4.Изобретение № 1760020 "Сейсмостойкий фундамент" 07.09.1992 5. Изобретение № 1011847 "Башня" 30.08.1982 6. Изобретение № 1038457 "Сферический резервуар" 30.08.1982 7. Изобретение № 1395500 "Способ изготовления ячеистобетонных изделий на пористых заполнителях" 15.05.1988 8. Изобретение № 998300 "Захватное устройство для колонн" 23.02.1983 9. Захватное устройство сэндвич-панелей № 24717800 опуб 05 05.2011 10. Стена и способ ее возведения № 1728414 опул 19.06.1989 11. Заявки на изобретение № 20181229421/20(47400) от 10.08.2018 «Опора сейсмоизолирующая «гармошка». Используется Японии. 12. Заявки на изобретение № 2018105803/20 (008844) от 11.05.2018 «Антисейсмическое фланцевое фрикционно-подвижное соединение для трубопроводов» F 16L23/02 , 13. Заявка на изобретение № 2016119967/20 ( 031416) от 23.05.2016 «Опора сейсмоизолирующая маятниковая» E04 H 9/02. 14. Журнал «Сельское строительство» № 9/95 стр.30 «Отвести опасность», А.И.Коваленко 15. Журнал «Жилищное строительство» № 4/95 стр.18 «Использование сейсмоизолирующего пояса для существующих зданий», А.И.Коваленко 16. Журнал «Жилищное строительство» № 9/95 стр.13 «Сейсмоизоляция малоэтажных жилых зданий», 17. Журнал «Монтажные и специальные работы в строительстве» № 4/95 стр. 24-25 «Сейсмоизоляция малоэтажных зданий», 18. Российская газета от 26.07.95 стр.3 «Секреты сейсмостойкости». А.И.Коваленко. 19. Российская газета от 11.06.95 «Землетрясение: предсказание на завтра», А.И.Коваленко 20. Газета «Грозненский рабочий» № 5 февраль 1996 «Честь мундира или сэкономленные миллиарды», 21. «Голос Чеченской Республики» 1 февраль 1996 «Башни и баллы» А.И.Коваленко. 21. Республика ЧР № 7 август 1995 «Удар невиданной звезды или через четыре года». А.И.Коваленко 21. Газета «Земля России» за октябрь 1998 стр. 3 «Уникальные технологии возведения фундаментов без заглубления – дом на грунте. Строительство на пучинистых и просадочных грунтах» 22. Газета «Земля России» № 2 ( 26 ) стр. 2-3 « Предложение ученых общественной организации инженеров «Сейсмофонд» – Фонда «Защита и безопасность городов» в области реформы ЖКХ. 23. Журнал «Жизнь и безопасность « № 3/96 стр. 290-294 «Землетрясение по графику» Ждут ли через четыре года планету «Земля глобальные и разрушительные потрясения «звездотрясения» А.И.Коваленко, Е.И.Коваленко. 24. Журнал «Монтажные и специальные работы в строительстве» № 11/95 стр. 25 «Датчик регистрации электромагнитных волн, предупреждающий о землетрясении - гарантия сохранения вашей жизни!» и другие зарубежные научные издания и журналах за 1994- 2004 гг. А.И.Коваленко и др. изданиях С брошюрой «Как построить сейсмостойкий дом с учетом народного опыта сейсмостойкого строительства горцами Северного Кавказа сторожевых башен» с.79 г. Грозный –1996. А.И.Коваленко в ГПБ им Ленина г. Москва и РНБ СПб пл. Островского, д.3
С техническими решениями фрикционно-подвижных соединений (ФПС) обеспечивающих многокаскадное
демпфирование (латунная шпилька, с пропиленным пазом, в который забит медный обожженный клин, свинцовые шайбы, проходили лабораторные испытания) можно ознакомиться: см.изобретения №№ 1143895, 1174616,1168755 SU, 4,094,111 US, TW 201400676 Restraintanti-windandanti-seismicfrictiondampingdevice, 165076 RU «Опора сейсмостойкая» Мкл E04H 9/02, Бюл.28, от 10.10. 2016 , СП 16.13330. 2011 ( СНиП II-23-81*), п.14,3 -15.2.4, ТКТ 45-5.04-274-2012( 02250), п.10.3.2 -10.10.3 ,СН 471-75, ОСТ 36-72-82, Руководство по проектированию, изготовлению и сборке монтажа фланцевых соединений стропильных ферм с поясом из широкополочных двутавров, Рекомендации по расчету, проектированию, изготовлению и монтажу фланцевых соединений стальных строительных конструкций, ЦНИПИ Проектстальконструкция, ОСТ 37. 001.050-73 «Затяжка резьбовых соединений», Руководство по креплению технологического оборудования фундаментными болтами, ЦНИИПРОМЗДАНИЙ, альбом, серия 4.402-9 «Анкерные болты», вып.5, ЛЕНГИПРОНЕФТЕХИМ, Инструкция по применению высокопрочных болтов в эксплуатируемых мостах, ОСТ108. 275.80, ОСТ37. 001. 050-73, ВСН 144-76, СТП 006-97, Инструкция по проектированию соединений на высокопрочных болтах в стальных конструкциях мостов», Рабер Л.М. (к.т.н.), Червинский А.Е. «Пути совершенствования технологии выполнения и диагностики фрикционных соединений на высокопрочных болтах» НМетАУ (Национальная металлургическая академия Украины, Днепропетровск), ШИФР 2.130-6с.95 , вып. 0-1, 0-2, 0-3. (Строительный Каталог ), «Направление развития фрикционных соединений. на высокопрочных болтах» (НПЦ мостов г . СПб), д.т.н. Кабанов Е.Б, к.т.н. Агеев В.С, инж. Дернов А.Н., Паушева Л.Ю, Шурыгин М.Н.
Для лабораторных испытаний были разработаны рабочие чертежи стадии КМ и КМД. Изготовление элементов конструкции и контрольная сборка производилась в организации «Сейсмофонд» при СПб ГАСУ. Инструкция по креплению фланцев к трубам из полиэтилена предусматривала такую последовательность производства работ:
1. Cобрать фланцы, обеспечив плотное примыкание фланцев и упоров друг с другом. Стянуть проектнымифрикци-болтами с пропиленным пазом, куда при монтаже и сборке забивается медный обожженный клин;
2. Установить в одной плоскости {в плане и по высоте}.
3. Приварить фланцы на ФФПС;
4. Выполнить именную маркировку с ФФПС.
5. После производилась окончательная установка и затяжка всех высокопрочных болтов.
6. Изобретения, используемые при испытаниях фланцевых фрикционно-подвижных соединений для трубопроводов по ГОСТ 15150, ГОСТ 5264-80-У1- 8, СП 73.13330 (п.п.4.5, 4.6, 4.7); СниП 3.05.05 (раздел 5). Трубопроводы соединены с резервуарами с помощью фрикци-анкерных, протяжных соединений (ФПС) с контролируемым натяжением, выполненных в виде болтовых соединений (латунная шпилька с пропи-ленным пазом, с забитым в паз шпильки медным обожженным энергопоглощающим клином, свинцовые шайбы), расположенных в длинных овальных отверстиях.
При испытаниях в ПК SCAD фрагментов косого антисейсмического фрикционно- демпфирующего компенсатора для соединения трубопроводов с резервуаром из полиэтилена (предназначены для работы в сейсмоопасных районах с сейсмичностью 9 баллов по шкале MSK-64) использовались:
1.Техническое решение демпфирующего компенсатора (изобретение "Опора сейсмостойкая", патент № 165076 Е04Н/9/02).
В основе антивибрационогофрикци-болта, поглотителя энергии лежит принцип, который называется "рассеивание", "поглощение" сейсмической, взрывной, вибрационной энергии. Энергопоглощение происходит за счет использования фланцевых фрикционно - подвижных соединений (АФФПС)- мини –компенсатора с фрикци-болтом и с демпфирующими узлами крепления (АФФПС).
Структурные элементы опоры с фрикци-болтом с разными шероховатостями и узлами соединения каркаса представляют фланцевую, фрикционную систему, обладающую значительными фрикционными характеристиками с многокаскадным рассеиванием сейсмической, взрывной, вибрационной энергии.
2. Изобретение "Стыковое соединение растянутых элементов", патент № 887748 использовалось при испытаниях фрагментов антисейсмическог демпфирующего компенсатора для соединения трубопроводов из полиэтилена к резервуару из полиэтилена.
С целью повышения надежности упрощения стыка было разработано новое техническое решение монтажных стыков растянутых элементов на косых фланцах, расположенных под углом 30 градусов относительно продольных осей стержневых элементов и снабженных смежными упорами. Указанная цель достигается тем, что каждый упор входит в отверстие смежного фланца и взаимодействует с ним.
Сущность изобретения заключается в том, что каждый из двух смежных упоров входит в отверстие смежного фланца и своим торцом упирается в кромку отверстия во фланце так, что смежные упоры друг с другом не взаимодействуют, а только со смежными фланцами, при этом, на упор приходится только половина усилия, действующего на стык в плоскости фланцев, а другая половина усилия передается непосредственно на фланец упором смежного фланца.
На фиг.1 приведен общий вид стыка сверху {применительно к стропильной ферме}, на фиг.2 показано горизонтальное сечение стыка по оси соединяемых элементов, на фиг.3 показаны разомкнутый стык и расчетная схема стыка, на фиг.4 приведен вид фланца в разрезе 1-1 на фиг.3.
Стык состоит из соединяемых элементов 1 со скошенными концами под углом ? к своей оси, фланцев 2, приваренных к скошенным концам соединяемых элементов 1, упоров 3, приваренных к фланцам 2, стяжных болтов 4, скрепляющих фланцы 2 друг с другом. Оси стыка 5 и 6 расположены в плоскости фланцев и нормально фланцам соответственно.
Стыкрастянутых элементов на косых фланцах ФПС устраивается следующим образом.
Отправочные марки конструкции {стропильной фермы} изготавливаются известными приемами, характерными для решетчатых конструкций. Фланец 2 в сборе с упором 3 изготавливается отдельно из стального листа на сварке. Из центральной части фланца вырезается участок для образования отверстия, в котором размещается упор смежного фланца.
Вырезанный из фланца фрагмент является заготовкой для упора, на который расходуется дополнительный материал. Благодаря этому экономится до 25% стали на стык. Контактные поверхности упора и кромки отверстия во фланце выравниваются стружкой, фрезерованием или другими способами. Фланец изготавливается с использованием шаблонов и кондукторов. Возможно изготовление фланца способом стального литья, что более предпочтительно. Фланцы крепятся к скошенным концам соединяемых элементов с помощью кондукторов.
Уменьшение болтовых усилий более, чем в два раза, во столько же снижает моменты, изгибающие фланцы, а это позволяет принять для них более тонкие листы, сокращая тем самым расход конструкционного материала. Кроме того, на материалоемкость предлагаемого соединения позитивно влияют возможные уменьшения диаметров стяжных болтов 4, снижение их количества или комбинация первого или второго.
Теоретическое исследование напряжений в зонах узловых соединений классическими методами теории упругости весьма затруднительно. Это вызвано разнообразием конструкций узлов, особенностями внешнего нагружения, а также крайне сложным взаимодействием элементов узла. В связи с этим, расчет напряженно-деформированного состояния модели узла стыка растянутых поясов ферм на косых фланцах выполняется МКЭ.
Для исследования напряженно деформированного состояния в образце был проведен расчет в программном комплексе SCAD Комета 2, и построена математическая модель. Расчет в Комете 2 основан на СНиП II-23-81, результат расчета представлен на рисунке 2. Как видно из результатов при расчетной нагрузке стенка колонны испытывает напряжения в 2,4 раза выше нормативного, также как и прочность сварки и фланца нарушена. Как можно заметить, в СНиПе заложены слишком высокие коэффициенты запаса прочности. Если же верить SCAD Комета 2, максимальная нагрузка на узел составляет 15 т/м, что меньше в два раза рассчитанного по британским нормам
Как можно заметить, результаты, полученные из разных источников, отличаются. Однако решение, полученное в программном комплексе SCAD наиболее точно описывает напряженное состояние в узле, ввиду того, что имеется возможность детально описать контактное взаимодействие и построить более структурированную сетку. Необходимо провести серию испытаний фланцев различной толщины, проанализировав тенденцию разрушения. Также следует доработать математическую модель на основе натурных испытаний. После чего можно создать пособие по проектированию фланцевых соединений.
Наиболее широко распространен метод контроля натяжения болта по крутящему моменту. Для создания проектного усилия натяжения высокопрочного болта Р, кН, необходимо приложить крутящий момент, величина которого в Нм пропорциональна диаметру болта d, мм, и определяется согласно СТП 006-97 [4] по эмпирической формуле М = kPd.
Коэффициент k, называемый коэффициентом закручивания, отражает влияние многочисленных технологических факторов.
На соотношение между крутящим моментом и усилием в болте влияют несколько основных факторов. Во-первых, шероховатость резьбовых поверхностей гайки и болта, определяющая величину сил трения в резьбе при закручивании. Во-вторых, геометрические параметры резьбы, её шаг и угол профиля. В-третьих, чистота соприкасающихся поверхностей шайбы и головки болта или гайки в зависимости от того, какой элемент вращается при натяжении соединения.
Существенное значение имеют механические свойства и химический состав стали, из которой изготовлены болты, гайки и шайбы, наличие антикоррозионного покрытия, а также на коэффициент закручивания влияет и то, вращением какого элемента натягивается болтоконтакт. СТП 006-97 установлено, что при закручивании соединения вращением болта значение крутящего момента должно приниматься на 5 % больше, чем при натяжении вращением гайки.
Воздействие этих многочисленных факторов невозможно определить теоретически, и общей оценочной характеристикой их влияния является устанавливаемый экспериментально коэффициент закручивания.
Для высокопрочных болтов, выпускаемых Воронежским, Улан-Удэнским и Курганским мостовыми заводами по ГОСТ Р 52643... 52646-2006 значения Р и М для болтов различного диаметра приведены в табл. 2 СТП 006-97. При этом коэффициент закручивания k принят равным 0,175.
В настоящее время для фрикционных соединений применяются метизы, изготовленные в разных странах, на разных заводах, по разным технологиям и стандартам. Допущены к использованию высокопрочные метизы с антикоррозионным покрытием: кадмированием, цинкованием, омеднением и другим. В этих условиях фактическое значение коэффициента закручивания может существенно отличаться от нормативных значений, и его необходимо контролировать для каждой партии комплектуемых высокопрочных метизов при входном контроле на строительной площадке по методике, приведённой в приложении Е ГОСТ Р 52643 и в приложении А СТП 006-97. Допустимые значения коэффициента закручивания в соответствии с требованиями п. 3.11 ГОСТ Р 52643 должны быть в пределах 0,14-0,2 для метизов без защитного покрытия и 0,11-0,2 - для метизов с покрытием. Погрешность оценки коэффициента закручивания не должна превышать 0,01. Для определения коэффициента закручивания используют испытательное оборудование, позволяющее одновременно измерять приложенный к гайке крутящий момент и возникающее в теле болта усилие натяжения с погрешностью, не превышающей 1 %. При этом применяются измерительные приборы, основанные на различных принципах регистрации контролируемых характеристик. В качестве такого оборудования в настоящее время используют динамометрические установки типа ДКП-1, УТБ-40, GVK-14m и другие.
Для натяжения болтов на проектное усилие СТП 006-97 рекомендует использовать гидравлические динамометрические ключи типа КЛЦ, автоматически обеспечивающие требуемый крутящий момент с погрешностью, не превышающей 4 %, посредством цепной передачи, приводимой в движение гидроцилиндром.
Однако в настоящее время при строительстве транспортных инженерных сооружений для натяжения высокопрочных болтов, как правило, применяют ручные динамометрические ключи рычажного типа КТР Курганского завода ММК с индикатором часового типа ИЧ 10. Их использование приводит к значительным трудозатратам и физическим перегрузкам рабочих в связи с необходимостью приложения силы от 500 до 800 Н к рукоятке ключа при создании проектной величины крутящего момента в процессе сборки фрикционных соединений на болтах диаметром 16-27 мм.
Кроме того, процесс установки высокопрочных болтов ключами КТР значительно удлиняется из-за необходимости постоянно каждые 4 ч беспрерывной работы и не менее двух раз за смену контролировать исправность ключей их тарировкой способом подвески контрольного груза.
Тарирование ключей КЛЦ проводится реже: непосредственно перед их первым применением, после натяжения 1000 и 2000 болтов и затем каждый раз после натяжения 5000 болтов либо в случае замены таких составных элементов ключа, как гидроцилиндр или цепной барабан.
При использовании гидравлических ключей упрощается контроль величины крутящего момента, который осуществляется по манометрам, а специальный механизм в конструкции ключа предотвращает чрезмерное натяжение болта.
Стоит отметить, что затяжка болтов должна происходить плавно, без рывков. Это практически невозможно обеспечить, используя ручные динамометрические ключи с длинной рукояткой, осложняющей затяжку болтов при сборке металлоконструкций в стеснённых условиях. Гидравлические ключи типа КЛЦ обеспечивают плавную затяжку высокопрочных болтов в ограниченном пространстве благодаря меньшим размерам и противомоментным упорам.
В настоящее время организация в мире разработаны различные модификации гидравлических динамометрических ключей: серии SDW (2 SDW), SDU (05SDU, 10SDU, 20SDU), TS (TS-07, TS-1), TWH-N (TWH27N) и других SDW.
Все модели имеют малогабаритное исполнение, предназначены для работы в труднодоступных местах с ограниченным доступом и обеспечивают снижение трудоёмкости работ по устройству фрикционных соединений.
Для обеспечения требуемой точности измерений необходимо выполнять тарировку оборудования.
Тарировку силоизмерительных устройств контроля натяжения болта в динамометрических установках выполняют на разрывной испытательной машине с построением тарировочного графика в координатах: усилие натяжения болта в кН (тс) - показание динамометра.
Тарировку механических динамометрических ключей типа КМШ-1400 и КПТР-150 производят с помощью грузов, подвешиваемых на свободном конце рукоятки горизонтально закреплённого ключа. По результатам тарировки строится тарировочный график в координатах: крутящий момент в Нм - показания регистрирующего измерительного прибора ключа.
Тарировать гидравлические динамометрические ключи типа КЛЦ-110, КЛЦ-160 и других можно с использованием тарировочного устройства типа УТ-1, конструкция и принцип работы которого описаны в СТП 006-97, приложение К.
При использовании динамометрических ключей возникает проблема прокручивания болтов при затяжке гаек, особенно обостряющаяся при применении высокопрочного крепежа, изготовленного по ГОСТ Р 52643-52646.
По данным «НИИ Мостов и дефектоскопии» установлено, что закрученные гайковёртом болты при дотягивании их динамометрическими ключами до расчётного усилия прокручиваются в 50 % случаев. Причина прокручивания заключается в недостаточной шероховатости контактных поверхностей головки болта и шайбы, подкладываемой под неё.
Инновационным решением проблемы контроля крутящего момента для обеспечения нормативного усилия натяжения болтоконтакта является новая конструкция высокопрочного болта с торцевым срезаемым элементом. Геометрическая форма таких болтов отличается наличием полукруглой головки и торцевого элемента с зубчатой поверхностью, сопряжённого со стержнем болта кольцевой выточкой, глубина которой калибрует площадь среза. Диаметр дна выточки составляет 70 % номинального диаметра резьбы.
Высокопрочные болты с контролируемым напряжением TensionControlBolts (TCB) широко применяются в мире. Их производят в соответствии с техническими требованиями EN 14399-1, с полем допуска резьбы для болтов 6g и для гаек 6 Н по стандартам ISO 261, ISO 965-2, с классом прочности 10.9 и механическими свойствами по стандарту EN ISO 898-1и с предельными отклонениями размеров по стандарту EN 14399-10.
В ЦНИИПСК им. Мельникова пока разработаны только ТУ 1282-16202494680-2007. Метизы новой конструкции не производятся и не применяются.
Конструкция болта с гарантированным моментом затяжки резьбовых соединений основана на связи механических свойств стали при растяжении и срезе. Расчётное сопротивление стали при срезе составляет 58 % от расчётного сопротивления при растяжении, определённого по пределу текучести.
При вращении болта за торцевой элемент муфтой внутреннего захвата ключа происходит закручивание гайки, удерживаемой муфтой наружного захвата ключа. В момент достижения необходимого усилия натяжения болта торцевой элемент срезается по сечению, имеющему строго определённый расчётом диаметр.
Для сборки фрикционных соединений на высокопрочных метизах с контролем натяжения по срезу торцевого элемента применяют ключи специальной конструкции.
Применение болтов с контролируемым натяжением срезом торцевого элемента увеличит производительность работ по сборке фрикционных соединений.
Устойчивая связь между прочностью стали на срез и на растяжение Rs = 0,58Ry позволяет сделать вывод о надёжности такого способа натяжения высокопрочных болтов для опор трубопроводов.
Такая технология натяжения болтов может исключить трудоёмкую и непроизводительную операцию тарировки динамометрических ключей, необходимость в которой вообще исчезает.
Конструкция ключей для установки болтов с контролем натяжения по срезу торцевого элемента не создаёт внешнего крутящего момента в процессе натяжения. В результате ключи не требуют упоров и имеют небольшие размеры.
Механизм ключей обеспечивает плавное закручивание вращением болта до момента среза концевого элемента, соответствующего достижению проектного усилия натяжения болта. При этом сборку фрикционных соединений можно производить с одной стороны конструкции.
Головку болта можно делать не шестигранной, а округлой, что упростит форму штампов для ее формирования в процессе изготовления болтов и устранит различие во внешнем виде болтового и заклепочного соединения.
Применение болтов новой конструкции значительно снизит трудоёмкость операции устройства фрикционных соединений, сделает её технологичной и высокопроизводительной.
Фрикционные или сдвигоустойчивые соединения — это соединения, в которых внешние усилия воспринимаются вследствие сопротивления сил трения, возникающих по контактным плоскостям соединяемых элементов от предварительного натяжения болтов. Натяжение болта должно быть максимально большим, что достигается упрочнением стали, из которой они изготовляются, путем термической обработки.
Применение высокопрочных болтов в фрикционных соединениях существенно снизило трудоемкость монтажных соединений. Замена сварных монтажных соединений промышленных зданий, мостов, кранов и других решетчатых конструкций болтовыми соединениями повышает надежность конструкций и обеспечивает снижение трудоемкости монтажных соединений втрое.
Однако, сдвигоустойчивые соединения на высокопрочных болтах наиболее трудоемки по сравнению с другими типами болтовых соединений, а также сами высокопрочные болты имеют значительно более высокую стоимость, чем обычные болты. Эти два фактора накладывают ограничения на область применения фрикционных соединений.
Сдвигоустойчивые соединения на высокопрочных болтах рекомендуется применять в условиях, при которых наиболее полно реализуются их положительные свойства — высокая надежность при восприятии различного рода вибрационных, циклических, знакопеременных нагрузок. Поэтому, в настоящее время, проблема повышения эффективности использования несущей способности высокопрочных болтов, поиска новых конструктивных и технологических решений выполнения фрикционных соединений является очень актуальной в сейсмоопасных районах.