В предыдущей статье мы говорили о скафандрах. Теперь поговорим о претензиях конспирологов к одной из самых важных частей программы. Лунном модуле, на котором совершались посадка и взлет с Луны. Как и в предыдущих статьях, мы будем разбирать основные, т.е. наиболее часто встречающиеся претензии. Перечислим их:
1. Лунный модуль должен был вырыть кратер на месте посадки.
2. Лунный модуль не мог управляться с двумя астронавтами и должен был разбиться при посадке из - за постоянного смещения центра тяжести перемещающихся в нем астронавтов.
3. В лунный модуль не мог поместится ровер.
4. Компьютеры тех времен не могли обеспечить контроль посадки и рассчитать траекторию прилунения.
5. Как модуль взлетел с Луны без стартовой площадки и кучи специалистов как при старте ракеты с Земли.
6. Спуск на поверхность Луны производится в три этапа. Космонавты на двух первых этапах испытывают длительную перегрузку, максимальное значение которой – 5. Перегрузка направлена вдоль позвоночника (самая опасная перегрузка) как они управляли посадкой в положении «стоя» при длительной 5-кратной перегрузке – это просто НЕВОЗМОЖНО!
7. Согласно данным самого НАСА, лунный модуль разбился во время своего единственного испытания на Земле. Так почему же следующим его испытанием стала попытка прилуниться?
Вроде все. Теперь давайте разбирать.
Лунный модуль должен был вырыть кратер на месте посадки. – А собственно, с чего бы там быть кратеру? Только из-за того, что в грунт ударяет газовая струя от зависшего над грунтом аппарата? Это бывает и на Земле - когда самолет с вертикальным взлетом и посадкой) садится на грунт или взлетает с него. Тяга двигателя, например, "Харриера" - 10 тонн, вдвое больше максимальной тяги двигателя лунной кабины. А как мы сейчас увидим, фактическая тяга двигателя лунной кабины в момент посадки раза в четыре меньше его максимальной тяги, так что тяга двигателя "Харриера" при вертикальной посадке больше тяги посадочного двигателя "Аполлона" на порядок. Но он не оставляет в грунте заметных ям - хотя пыль стоит столбом.
Поговорим о тяге двигателя посадочной ступени. Действительно, его максимальная тяга составляет 4530 кГс. Но "в полную силу" этот двигатель работает только при переходе с окололунной орбиты на траекторию снижения, когда надо изменить скорость лунного корабля на значительную величину. А при маневрировании вблизи поверхности и при посадке двигатель работает в режиме малой тяги, в котором его тяга изменяется в пределах 10-65% от максимальной. Непосредственно перед посадкой двигатель развивает тягу в несколько раз меньше максимальной - он всего лишь компенсирует вес посадочного модуля, чтобы тот не упал. Масса посадочного модуля - 15065 кг, его вес на Луне - 15065 кг * 1,62 м/c2 = 24405,3 Н ~=2440 кГс. А если учесть что в момент подхода к самой поверхности Луны почти все топливо посадочной ступени, которое имеет массу 8217 кг, уже израсходовано, то тяга получается примерно (15065 - 8217) кг * 1,62 м/c2 = 11093,76 Н ~= 1109 кГс - в четыре с лишним раза меньше максимальной.
Подсчитаем давление на лунный грунт, которое создает вытекающая из двигателя газовая струя. Силу давления мы уже знаем - она равна весу лунного модуля в момент посадки, т.е. примерно 1100 кГ. Диаметр сопла двигателя составлял 137 сантиметров, а его площадь - 14775 см2. Будем считать, что газовая струя, выходящая из двигателя, не расширяется в стороны, т.е. площадь соприкосновения ее с лунной поверхностью такая же. Разделив 1100 кГ на 14775 см2, получим, что давление составляло менее 0,1 атмосферы - вполне достаточно, чтобы сдуть пыль из-под двигателя, но явно маловато для того, чтобы вырыть кратер - особенно в лунном грунте. Этот грунт достаточно твердый.
Лунный модуль не мог управляться с двумя астронавтами и должен был разбиться при посадке из - за постоянного смещения центра тяжести перемещающихся в нем астронавтов.
Опять не знание принципов ракетостроения. Непременная часть системы управления любой ракеты - автомат угловой стабилизации. Именно он обеспечивает устойчивость ракеты в полете. Входящие в его состав гироскопические датчики вырабатывают электрические сигналы, пропорциональные угловым отклонениям ракеты от требуемого положения. Эти сигналы усиливаются и подаются на рулевые органы ракеты (газовые рули, приводы поворота двигателей и т.п.), и ракета разворачивается и занимает нужную ориентацию в пространстве. Эта задача давно отработана - ее необходимо решить для любой ракеты, и ничего специфического в управлении именно лунным модулем нет.
Посадочный двигатель лунного модуля может поворачиваться и компенсировать возможные смещения центра тяжести. Кроме того, на взлетной ступени расположено 16 двигателей системы ориентации и стабилизации, собранных в 4 группы по 4 двигателя в каждой. На фрагменте фотографии NASA AS17-134-20463 хорошо видны две группы этих двигателей: одна - по центру кадра, другая - в его правом нижнем углу. Эти двигатели работают и при посадке, т.к., например, поворот модуля вокруг вертикальной оси возможен только с их помощью. А основной двигатель взлетной ступени закреплен жестко, поэтому при взлете с Луны ориентация взлетной ступени обеспечивается исключительно работой этих двигателей.
В лунный модуль не мог поместится ровер. Это правда. Не мог и не должен был. Он, во-первых, был складной, а во-вторых, крепился снаружи и необходимости запихивать его внутрь не было.
Компьютеры тех времен не могли обеспечить контроль посадки и рассчитать траекторию прилунения. Конечно, установленные на "Аполлонах" компьютеры были на несколько порядков слабее компьютера, стоящего сейчас на вашем столе, по всем параметрам (кроме цены - здесь соотношение, наверно, обратное). Компьютер, установленный на лунном корабле, имел оперативную память всего около 4 Кбайт (ферритовое ОЗУ на 2 048 15-битных слов), ферритовое ПЗУ на 36 864 15-битных слов, состоял из 5000 микросхем, весил 30 кг и стоил 150 тысяч долларов. Сейчас данные этого компьютера не слишком впечатляют (опять-таки, кроме цены), но в 60-е годы это были, пожалуй, первые портативные компьютеры, собранные с широким применением интегральных схем. Но даже маломощный компьютер способен на многое - если не загружать его навороченными пользовательскими интерфейсами. Панель управления компьютером содержала всего 19 клавиш и несколько сигнальных транспарантов и цифровых индикаторов. Поэтому компьютер занимался только прямыми обязанностями, не отвлекаясь на рисование "окон" на экране. И благодаря этому он мог осуществлять управление лунным кораблем в реальном времени. На компьютере могли выполняться параллельно несколько задач, причем управляющая программа учитывала их приоритеты: более важные задачи, такие, как управление кораблем, выполнялись в первую очередь, а, например, выдача информации на индикаторы могла и подождать десяток-другой миллисекунд. Сложные расчеты траекторий, требующие большого объема вычислений, были проделаны на мощных компьютерах на Земле заранее, еще до полета, и их результаты были загружены в бортовой компьютер, который "пользовался готовыми ответами"
Как модуль взлетел с Луны без стартовой площадки, большой ракеты и кучи специалистов как при старте ракеты с Земли.
Взлететь с Луны в космос во много раз легче, чем с Земли. Главная причина этого - в том, что Луна гораздо меньше, чем Земля (ее радиус в 3,7 раза меньше земного), а сила притяжения на ее поверхности вшестеро слабее тяготения Земли. Поэтому первая космическая скорость (т.е. такая скорость, которую должен иметь искусственный спутник, чтобы вращаться вокруг небесного тела, не падая на него) для Земли равна 8 км/с, а для Луны - всего 1,7 км/с, т.е. почти впятеро меньше. Стартующая с Земли ракета при своем подъеме преодолевает плотные слои атмосферы. При этом сила тяги ее двигателей частично тратится на преодоление сопротивления воздуха, а возникающие аэродинамические нагрузки на ее корпус вынуждают делать конструкцию достаточно прочной - и, следовательно, утяжелять ее. На Луне атмосфера отсутствует, и это значит, что и тяга двигателей не расходуется впустую, и ракету можно сделать менее прочной и более легкой.
Наконец, при старте с Земли в космос, как правило, выводится так называемая "полезная нагрузка" (спутник или космический корабль) довольно солидной массы - тонны или даже десяток-другой тонн. А при старте с Луны полезная нагрузка составляла два-три центнера: два астронавта и ящик с собранными ими камнями…
Стартовое сооружение астронавты привозили с собой. Им служила нижняя половина их лунного корабля: при старте верхняя половина с кабиной астронавтов отделялась от нее и взлетала в космос. Заправочные устройства на Луне не требовались - корабль полностью заправлялся топливом еще на Земле. Наконец, центр управления при старте с Луны все-таки имелся. Правда, он находился в трети миллиона километров от стартующего корабля, на Земле, но от этого работал не менее эффективно.
Вообще-то американцы не делали секрета из технических данных своих лунных кораблей и публиковали соответствующие цифры. Вы можете найти отрывки из советских учебников для вузов, в которых приводятся эти данные. И отечественные специалисты, писавшие эти учебники, воспроизводили эти цифры и не видели в них ничего нереального. Впрочем, эти специалисты совершили вещь поудивительнее, чем старт с Луны кораблика с двумя людьми, им управлявшими. Созданная ими машина обошлась вообще без человеческого участия. 21 сентября 1970 года с Луны стартовала в обратный путь к Земле автоматическая станция "Луна-16". Впервые в истории полностью автоматический аппарат взлетел с одного небесного тела и через три дня совершил посадку на другом - на Земле. Станция доставила на Землю 100 грамм лунного грунта. Позже это достижение повторили станции "Луна-20" и "Луна-24". И нашим "Лунам" не потребовались ни космодромы на Луне, ни заправочные сооружения, ни какое-либо предстартовое обслуживание - они проделали маршрут Луна-Земля полностью самостоятельно.
Спуск на поверхность Луны производится в три этапа: Космонавты на двух первых этапах испытывают длительную перегрузку, максимальное значение которой – 5. Перегрузка направлена вдоль позвоночника (самая опасная перегрузка) как они управляли посадкой в положении «стоя» при длительной 5-кратной перегрузке – это просто НЕВОЗМОЖНО!
Массу лунного корабля мы знаем - 15 тонн, т.е. 15 000 кг. И силу тяги ее двигателя - 5 тонн, или примерно 50 000 ньютонов - тоже (на самом деле она чуть-чуть поменьше, около 4,5 тонн). А вот пятикратную перегрузку конспирологи взяли с потолка, хотя она элементарно вычисляется на основании известных вам данных. Про второй закон Ньютона слыхали? Согласно этому закону, сила есть произведение массы на ускорение, поэтому ускорение лунной кабины равно силе тяги ее двигателя, деленной на ее массу, т.е. 3.3 м/с2 - втрое меньше ускорения свободного падения на Земле "g" (9.8 м/с2). Поэтому астронавты вместо пятикратной перегрузки, которой вы их так стращаете, испытывали троекратную "недогрузку". Правда, это ускорение росло со временем: масса корабля уменьшалась по мере выгорания топлива. Но даже если врубить посадочный двигатель "на всю катушку" в момент, когда сожжено практически все топливо посадочной ступени (8 тонн), ускорение лунного корабля составило бы всего-навсего 7 м/с2 - несколько менее "g". Так что лунный корабль ни при каких обстоятельствах не способен создать для находящихся в нем астронавтов перегрузку в том смысле, в каком обычно понимают это слово - искусственную силу тяжести, превышающую вес на Земле: слишком мала его сила тяги по отношению к его массе. А непосредственно перед посадкой, когда астронавты брали управление на себя, им становилось совсем легко (правда, только в самом буквальном смысле слова "легко", относящемся к весу; в других смыслах им было весьма тяжело). Лунный корабль в это время двигался без значительных вертикальных ускорений, поэтому вес астронавтов определялся лишь силой притяжения Луны и был вшестеро меньше земного.
Согласно данным самого НАСА, лунный модуль разбился во время своего единственного испытания на Земле. Так почему же следующим его испытанием стала попытка прилуниться?
Лунный модуль на Земле никто не испытывал. Не может он летать при земной силе тяжести - сила тяги его двигателя гораздо меньше его веса, так что он просто не оторвется от земли. Поэтому его могли испытывать - и испытывали - только в космосе. Испытаний перед первой высадкой было целых три. Сперва его опробовали в беспилотном режиме во время полета "Аполлона-5" в январе 1968 года, еще до первого пилотируемого полета "Аполлона". Потом было еще два пилотируемых испытания - на околоземной орбите во время полета "Аполлона-9" и на окололунной - при полете "Аполлона-10".
А на Земле летал специально построенный для астронавтов тренажер. На нем был установлен вертикально мощный реактивный двигатель, который компенсировал пять шестых веса аппарата. Так осуществлялась имитация его веса на Луне. Но имитация была неполной - если аппарат кренился, то сила тяги двигателя действовала наклонно, ее вертикальная составляющая, компенсирующая вес, уменьшалась, и появлялась горизонтальная составляющая, которая начинала двигать аппарат в сторону. Поэтому управлять этим тренажером было даже сложнее, чем настоящим лунным модулем.
Этих тренажеров было четыре или даже пять. В процессе тренировок астронавты добросовестно расколошматили три из них. Один разбил лично Армстронг - в одном из полетов тренажер стал сильно раскачиваться, Армстронг не сумел погасить колебания и был вынужден катапультироваться. Но благодаря многочисленным полетам на этих тренажерах (а также отработке навыков пилотирования на наземных нелетающих тренажерах лунного модуля, которые также были в NASA) все астронавты уверенно справились с управлением лунным модулем, несмотря на возникавшие при посадке сложные ситуации.
На сегодня все. Если есть еще претензии к лунному модулю – добро пожаловать в коменты. Возможно, дополним статью. В следующей статье – разбор претензий к лунному грунту. Подписывайтесь и следите за новостями.
Смотрите так же. "Космическая гонка". Как это было. Часть первая. "Поехали!.."