Найти в Дзене

Природа электричества

Мир, в котором мы живем, устроен намного сложней, чем это кажется с первого взгляда.
Электрическая сила похожа на силу тяжести, но имеет совсем другую природу.
Вы подняли с земли небольшой камушек, а затем разжали ладонь, и камушек падает вниз, тянется к земле. Почему? Так устроен мир, в котором мы живем, — все тела притягиваются друг к другу, стремятся сблизиться, и это явление мы называем

Мир, в котором мы живем, устроен намного сложней, чем это кажется с первого взгляда.

Электрическая сила похожа на силу тяжести, но имеет совсем другую природу.

Вы подняли с земли небольшой камушек, а затем разжали ладонь, и камушек падает вниз, тянется к земле. Почему? Так устроен мир, в котором мы живем, — все тела притягиваются друг к другу, стремятся сблизиться, и это явление мы называем гравитацией, гравитационным взаимодействием. Откуда оно берется? Почему действует именно так, а не иначе? Ответ все тот же — так устроен мир...

Один из примеров гравитационного взаимодействия — притягивание предметов к земле, то, что в нашем сознании связывается со словами «сила тяжести», «вес», «земное притяжение». Железный шар тянется к земле сильнее, чем деревянный, большой — сильнее, чем маленький. Характеристика какого-либо физического тела, которая показывает, насколько сильно, насколько активно это тело участвует в гравитационных взаимодействиях, называется его массой. Чем сильнее физическое тело — камень, железный или деревянный шар, капля воды, планета — тянется к другому физическому телу под действием гравитационных сил, тем, говорим мы, больше масса этого тела. А можно сказать так: чем больше массы взаимодействующих тел, тем сильнее их гравитационное притяжение. Кстати, именно поэтому такими легкими чувствуют себя космонавты на Луне: ее масса меньше, чем масса Земли, и Луна тянет к себе в несколько раз слабее.

С гравитацией человек познакомился тогда, когда он еще не был Человеком. Мы привыкли к ней, считаем ее совершенно естественной и чуть ли не единственной силой, которая правит миром.

Но вот древнегреческий философ и исследователь природы Фалес Милетский впервые отмечает, что у гравитации есть могучий соперник, ранее ловко скрывавшийся от людей. Обнаружилось, что если натереть шерстью янтарную палочку, то палочка притягивает к себе легкие предметы, скажем клочки ткани. Под действием своей тяжести, то есть под действием гравитационного притяжения к земле, эти клочки ткани должны были бы падать, двигаться вниз. А они, преодолевая силы гравитации, упрямо поднимаются вверх.

О чем это могло говорить? Только об одном — кроме гравитационных сил, кроме сил притяжения, которые стремятся сблизить, стянуть в одно место две массы, в мире существуют еще какие-то силы, которые в данном опыте с натертой янтарной палочкой оказались сильнее гравитационных. Какова природа неизвестных ранее сил? Почему только после натирания янтаря у него появляются новые свойства?

Ответить на эти вопросы первые исследователи не могли, они лишь зафиксировали обнаруженный факт и дали новому явлению свое название — «электричество». «Электричество» происходит от греческого слова «электрон», что означает «янтарь», и «электричеством» новое явление было названо именно потому, что оно было обнаружено в опытах с янтарной палочкой, натиранием янтаря позволяют сделать очень важный вывод. До этих опытов было известно только одно основное свойство материи — масса, которое заставляло предметы притягиваться друг к другу, двигаться, работать. Натертый янтарь показал, что наряду с массой у вещества может быть еще одно работающее основное свойство, в дальнейшем ему дали название «электрический заряд». Почему электрический — понятно. Почему заряд? Трудно сказать... Может быть, тот, кто впервые ввел это понятие— электрический заряд, — представлял себе, как, натирая янтарь, в него вталкивают некую невесомую электрическую массу, заряжают янтарь электричеством, подобно тому как заряжали когда-то пушку, вталкивая в нее стальное ядро.

Электричество, электрический заряд — не единственное принципиально новое свойство материи, открытое пытливым человеком. Несколько тысячелетий назад у некоторых металлических руд были обнаружены ни на что другое не похожие магнитные свойства, которые не хуже гравитации и электричества могут работать, двигать физические тела. И уже совсем недавно, уже в нашем веке, открыт еще один совершенно новый сорт основных свойств материи — ядерные силы. Это не гравитация, не электричество, не магнетизм. Действуют ядерные силы совершенно самостоятельно, причем только на очень небольших расстояниях. Именно они каким-то своим собственным способом стягивают расталкивающие друг друга составные части атомного ядра. А потом открыли еще одно фундаментальное свойство материи, еще один вид особых сил — их назвали слабыми, хотя действуют эти слабые силы во много раз сильнее, чем гравитация.

Вот так-то... Все было просто, была одна гравитация, а теперь — вон сколько открылось основных свойств материи... Мир намного сложней, чем кажется человеку, который, подобно своему доисторическому предку, видит лишь то, что видно с первого взгляда...

Нужно, правда, отметить, что современная физика пытается, в каком-то смысле, упростить открывавшуюся ей сложную картину мира: в современной физике господствует представление о единой природе, о «великом объединении» всех известных сил — сильных, слабых, электромагнитных, гравитационных. Могучие силы теории и эксперимента направлены на то, чтобы выявить эту единую природу. Причем на этом пути есть уже огромное достижение — экспериментально подкреплена теория, объединившая электромагнитные и слабые силы в единое, как его называют, электрослабое взаимодействие.

Но вернемся, однако, от этой высокой физики к делам простым и практически важным.

Электричество и гравитация в чем-то очень похожи, и работают они по очень похожим правилам. Гравитационное притяжение тем сильней, чем больше взаимодействующие массы; электрическое — чем больше заряды. А если раздвигать взаимодействующие тела, увеличить расстояние между ними, то обе силы — электричество и гравитация — резко ослабевают.

Для того чтобы почувствовать реальность таких понятий, как «гравитация», «масса», «сила тяжести», не нужно раскрывать учебник физики. Достаточно положить его на ладонь. Мы непосредственно воспринимаем массу, ощущаем ее, чувствуем массу своего тела, массу покупки, которую несем из магазина, массу упавшего на ногу камня. Электрический заряд, конечно, на ощупь не почувствуешь, в реальность электричества можно поверить, лишь проделав специальные опыты. К тому же масса — понятие привычное, мы привыкали к нему миллионы лет. А с электричеством сталкиваемся несколько десятилетий. Но электричество сегодня уже играет в нашей жизни такую важную роль, что силой мысли, силой воображения нужно отвести ему достойное место в своей картине мира. В него нужно неотвратимо поверить, к нему нужно привыкнуть.

Электричество бывает двух видов, двух сортов: положительное и отрицательное. В результате гравитационного взаимодействия физические тела только притягиваются, пока еще никто не наблюдал антигравитации, то есть расталкивания двух масс. Отсюда можно сделать вывод, что в природе существует масса только одного сорта и что одинаковые массы взаимодействуют только так — они взаимно притягиваются. Одинаковость, однотипность масс установлена с колоссальной, просто-таки фантастической точностью— до миллионных долей миллионной доли процента. В отличие от массы, электричество бывает двух разных сортов, и в этом может убедиться каждый, проделав простейшие опыты с натиранием стеклянной и пластмассовой палочек. Поначалу может показаться, что электричество всегда действует одинаково, но, передавая заряды с натертых палочек двум легким шарикам, можно убедиться, что в разных случаях они ведут себя по-разному. Шарики, получившие электрический заряд разных сортов (разноименно заряженные), притягиваются, одинаковых сортов (одноименно заряженные) —отталкиваются. Если бы электричество было только одного сорта, то взаимодействие зарядов всегда было бы одинаковым: наэлектризованные предметы либо только притягивались бы, либо только отталкивались.

Два разных сорта электричества нужно было как-то назвать, скажем, «электричество сорта А» и «электричество сорта Б». Однако тому, кто давал имя этим сортам, понравились другие слова, и он назвал два разных сорта электричества положительным (сокращенное обозначение « + », «плюс») и отрицательным («—», «минус»). В данном случае привычный для нас смысл этих слов не имеет никакого значения, и ни в коем случае не нужно думать, что положительное электричество чем-то лучше отрицательного, как, скажем, положительный литературный герой или положительный пример.

Электрический заряд, который назвали положительным, появляется у натертого стекла, отрицательный — у натертой пластмассы. Попробуем провести такой мысленный эксперимент: будем ломать, распиливать, крошить наэлектризованные стекло и пластмассу, чтобы найти в них самые маленькие порции электрического заряда.

Молекула — мельчайшая частица данного вещества. Мысленный эксперимент, кроме всего прочего, хорош тем, что любая трудная работа здесь идет легко и быстро. Вот и у нас уже появились сначала маленькие кусочки наэлектризованного вещества, затем очень маленькие и, наконец, самые маленькие частички стекла и пластмассы — их молекулы. Можно, конечно, и эти молекулы, например молекулы стекла, разделить на составные части, но то, что при этом получится, уже не будет стеклом. Здесь, по-видимому, уместно такое сравнение. Представьте себе, что вам нужно разделить на районы город. Самый маленький район, который может получиться, — это один дом, молекула большого города. Можно, конечно, и дом разобрать по частям, но вряд ли какую-нибудь из строительных деталей можно будет назвать районом города.

Получив молекулы стекла и пластмассы, мы обнаружим, что некоторые из них наэлектризованы, то есть обладают электрическими свойствами, а другие не обладают. Остается предположить, что электрический заряд молекулы, ее электрические свойства связаны с какой-то еще более мелкой частицей, которая или входит, или не входит в молекулу. И если входит, то делает ее наэлектризованной. Чтобы проверить эту гипотезу, продолжим свой мысленный эксперимент и разделим наэлектризованную молекулу на составные части.

Подобно тому как современный дом состоит из отдельных типовых блоков — перекрытий, лестничных пролетов, стеновых панелей, — подобно этому молекула любого вещества состоит из типовых блоков вещества — атомов. В молекулу могут входить самые разные атомы и в самой разной пропорции, они могут по-разному соединяться друг с другом, образовывать различные пространственные конструкции. Разные сочетания разных атомов дают воздух и воду, мрамор и зеленый лист винограда, соль и сахар, стекло и пластмассу.

Продолжив свой мысленный эксперимент и разобрав на части молекулы подопытных веществ — стекла и пластмассы, — мы обнаружим, что и среди атомов попадаются, казалось бы, совершенно одинаковые «на вид», но при этом разные — наэлектризованные и не наэлектризованные экземпляры, атомы с электрическим зарядом и без него, то есть электрически нейтральные. И после этого нам не останется ничего другого, как в поисках мельчайших частичек электрического заряда разобрать на части сам атом. Планетарная модель атома — массивное ядро, вокруг которого вращаются электроны. Слово «атом» в переводе с греческого означает «неделимый». Это название появилось очень давно, когда о настоящих атомах, в современном понимании этого слова, никто и представления не имел. Просто считалось, что всякое вещество можно дробить на части до тех пор, пока не получатся мельчайшие невидимые пылинки, которые дальше уже разделить нельзя. Невозможно. Вот эти гипотетические, то есть предполагаемые неделимые, пылинки древние греки и называли атомами. Позднее название «атом» перешло к частицам уже не гипотетическим, а совершенно реальным, к тем самым основным блокам, из которых, как было установлено, строятся разные вещества. Еще каких-нибудь сто лет назад некоторые ученые считали эти блоки неделимыми и с чистой совестью называли их атомами. И только в начале 20 века было установлено, что, строго говоря, атом нельзя называть атомом, что атом не есть неделимый блок, он представляет собой сложную машину и состоит из множества разнообразных деталей.

Склеенная из пластмассы модель самолета или даже летающая его модель лишь в небольшой степени похожа на воздушный лайнер, берущий на борт сотни пассажиров. Но вместе с тем, рассматривая эти модели, можно узнать много важного о настоящих самолетах, об устройстве их основных деталей, о том, для чего эти детали нужны.

Одна из правдоподобных моделей атома похожа на нашу Солнечную систему, и ее так и называют — «планетарная модель». В центре планетарной модели — основная деталь атома, его ядро, массивный шар, в котором сосредоточена почти вся атомная масса. Вокруг ядра вращаются маленькие и легкие шарики — электроны, чем-то напоминая планеты, вращающиеся вокруг Солнца. Такая картина очень наглядна, ее легко себе представить, но, конечно же, планетарная модель — это упрощение, искажение истины. Скажем, электроны — это совсем не шарики-пылинки, а некоторые во многом еще загадочные сгустки материи, которые ведут себя не только как частицы, но и как волны. И двигаются электроны не по спокойным круговым орбитам, как Венера или Земля вокруг Солнца. Электроны как бы размазаны в пространстве, распределены по сферам вокруг ядра, образуют вокруг него так называемые электронные оболочки. И само ядро — тоже не бильярдный шар. Это огромный (по атомным масштабам, разумеется) бурлящий котел, в котором непрерывно идут сложные превращения вещества и энергии, рождаются и умирают частицы.

И все же планетарная модель, несмотря на все ее недостатки, помогает просто и правильно объяснить многие важные процессы в атоме, многие особенности его конструкции. Именно поэтому свое путешествие в атомные глубины мы начнем с того, что построим упрощенную действующую — именно действующую — планетарную модель самого простого из известных атомов. Привяжите нитку к спичечной коробке, раскрутите ее вокруг руки, и модель готова. Ваша рука в ней играет роль атомного ядра, вращающаяся на нитке спичечная коробка — роль электрона. Но чью же роль в таком случае играет нитка? Ведь если нитка оборвется, то коробка под действием центробежной силы улетит в сторону, без нитки наш «атом» существовать не может. А в настоящем атоме нет никакой нитки, которая связывала бы ядро с электроном, и вместе с тем атом не разрушается, электрон с огромной скоростью (миллионы оборотов в секунду) вращается вокруг ядра и никуда не улетает. Что его держит? Какая сила привязывает, притягивает вращающийся электрон к ядру, не позволяет ему оторваться, улететь? Это делает электричество.

В атомных частицах — электроне и протоне — хранятся мельчайшие порции электрических зарядов. Точными опытами установлено, что любой электрон обладает некоторым отрицательным электрическим зарядом, то есть зарядом того же самого сорта, который был обнаружен у пластмассовой палочки. Электрический заряд есть обязательное, непременное свойство электрона, такое же непременное, как масса. У всех электронов электрический заряд одинаков, так же, скажем, как одинакова масса у всех пятаков.

Теперь заглянем в ядро. Если не бояться упрощений, то можно считать, что ядро состоит из крепко склеенных частиц двух сортов — нейтронов и протонов. И те и другие — довольно тяжелые частицы, масса каждой из них почти в две тысячи раз больше массы электрона: если электрон — копейка, то протон или нейтрон—двухкилограммовая гиря. Различаются ядерные частицы — нейтрон и протон — прежде всего тем, что нейтрон в электрическом отношении нейтрален (отсюда и его название), то есть никакими электрическими свойствами он не обладает, а у протона есть положительный электрический заряд.

Подведем некоторые итоги. Электрон на орбите, протон в ядре. Обе частицы от природы обладают электрическими свойствами. У электрона отрицательный электрический заряд, «минус», у протона — положительный, «плюс» ...

Теперь уже, наверное, понятно, почему именно электрические силы в настоящем атоме делают то, что в нашей модели делала нитка, — притягивают вращающийся электрон к ядру. У протонов и у электронов разноименные электрические заряды, и силы их электрического взаимодействия стараются стянуть, сблизить эти частицы.

Еще одна интересная особенность: у электрона и у протона заряды хотя и разного сорта, но равны по величине, по своей, если можно так сказать, действующей силе. Массы у этих частиц разные — вспомните: копейка и двухкилограммовая гиря, — а электрические заряды, электрические свойства одинаковые. Это тоже может быть доказано точными опытами. Если расположить на некотором расстоянии один от другого два протона и на таком же расстоянии один от другого два электрона, то электрические силы будут расталкивать протоны, (одноименные заряды отталкиваются) с такой же силой, как и электроны.

Сравнительно недавно, в середине семидесятых годов, начала активно развиваться и получать экспериментальное подтверждение физическая теория, согласно которой такие частицы, как протон и нейтрон (к электрону это не относится), состоят из еще более «мелких деталей» — кварков. У кварков электрический заряд меньше, чем у протона, и может составлять 1/3 или 2/3 от той порции электричества, которую имеет протон. Причем заряд кварков может быть, как положительным, так и отрицательным. Однако теория предсказывает, что сами кварки выделить из протонов или других частиц и получить в «чистом виде» невозможно, а может быть, даже принципиально невозможно. Придравшись к этому, мы будем считать, так же как считалось до появления квартовых теорий, что положительный заряд протона и отрицательный заряд электрона — это самые малые порции электричества, которые можно обнаружить в природе.

Атомы разных химических элементов различаются числом протонов в ядре и электронов на орбитах. Простейшая планетарная модель атома, построенная нами, — спичечная коробка, которая вращается вокруг руки, — это модель атома водорода. В его ядре — один протон (+), а на орбите — один электрон (-). Бывают атомы водорода, в которые входят еще и нейтроны (это так называемые изотопы), но мы нейтроны во внимание принимать не будем. Потому, они нейтральные, электрического заряда у них нет и на электрические свойства атомов они не влияют.

Следующий по сложности — атом гелия. В его ядре уже два протона, а на орбите — два электрона (нейтроны мы опять-таки не принимаем во внимание, хотя они есть и у гелия, и у всех более сложных атомов). У лития — три протона и три электрона, у бериллия — четыре и четыре, бора — пять и пять, углерода — шесть и шесть, азота — семь и семь и так далее.

Электроны вращаются вокруг ядра по разным орбитам. Некоторые из орбит находятся поближе к ядру, другие подальше от него, третьи — совсем далеко. Все электронные орбиты сгруппировываются в несколько слоев, в несколько, как принято говорить, электронных оболочек. В первом, самом близком к ядру, слое только две орбиты, два вращающихся электрона (исключение — атом водорода, у которого всего один электрон), во втором слое может быть уже до восьми орбит, в третьем — до восемнадцати. Особое значение имеет наружный слой электронных орбит, потому что именно с помощью своих внешних электронов атомы соединяются друг с другом, образуя молекулы. А сейчас несколько слов о другой важной особенности атомных конструкций.

Положительный ион и отрицательный ион — атомы, у которых нарушено электрическое равновесие. Обнаружив в электронах и протонах мельчайшие порции электричества, мы можем теперь объяснить, как появляются электрические свойства у более крупных «предметов» — у атомов, у молекул, и у натертых палочек из пластмассы и стекла. В нормальном своем состоянии любой атом электрически нейтрален — число протонов в его ядре и число электронов на орбитах одинаково. А при этом и суммарный положительный заряд атома и его суммарный отрицательный заряд как бы нейтрализуют друг друга, и за пределами атома никакие его электрические свойства вообще не ощущаются. Вещество, состоящее из таких нейтральных атомов, само тоже нейтрально, электрического заряда у него нет.

Если же каким-то способом удалить с атомной орбиты хотя бы один электрон, то общий заряд электронов будет уже меньше, чем общий заряд протонов. И такой атом в целом будет обладать положительным зарядом. А значит, будет обладать положительным зарядом и молекула, куда входит этот наэлектризованный атом, и в итоге вещество, в которое входит наэлектризованная молекула. У натертой стеклянной палочки положительный заряд появляется именно потому, что при натирании мы, грубо говоря, выдираем электроны из многих атомов, расположенных в поверхностном слое стекла.

Можно при натирании каким-то способом втолкнуть в атом лишний электрон, у некоторых веществ ему найдется местечко на орбите. У такого атома электронов окажется больше, чем протонов в ядре, а значит, появится отрицательный заряд. В итоге отрицательный заряд будет у молекулы, включившей в себя этот атом, и у вещества, куда входит наэлектризованная молекула. Именно так можно объяснить появление отрицательного электрического заряда у натертой пластмассовой палочки.

В заключение остается назвать имена, которые присваивают атомам в зависимости от их электрического состояния.

Нормальный атом, такой, у которого число протонов и число электронов одинаково и который поэтому во внешнем мире никак не проявляет своих электрических свойств, называют нейтральным атомом. Атом с недостающими электронами (или, другими словами, с избытком протонов) называют положительным ионом — в целом такой атом ведет себя как частица, имеющая чистый положительный заряд. Атом с избытком электронов ведет себя как частица с чистым отрицательным зарядом, и такой атом называют отрицательным ионом.

Электрические силы могли бы работать в машинах. С давних пор люди стремятся умножить силу своих мускулов, выполнять работу большую, чем могли бы по своим природным способностям. Стремятся они к этому не просто так, не ради спортивного интереса, а для того, чтобы улучшить свои жизненные условия, чтобы жить лучше, чем предначертано дикой природой. В разные времена человек приспособил себе в помощники домашних животных, энергию падающей воды, ветра, расширяющегося пара, взрывающихся бензиновых паров. И конечно же, не мог он оставить в бездействии такую прекрасную работающую силу, как электричество.

Уже простейшие опыты с натиранием стекла и пластмассы говорят о том, что электричество может работать, ну скажем, перемещать какие-то грузы. Или приводить в движение машины, подобно тому, например, как гравитационные силы вращают жернова водяной мельницы (работает падающая, притягиваемая к земле вода). В принципе работоспособность электричества огромна, значительно больше, чем работоспособность гравитации. Если стеклянную и пластмассовую палочки размером с карандаш расположить на расстоянии метра, то под действием гравитационных сил они будут притягиваться одна к другой, как и любые две массы. Но сила этого притяжения будет в миллиарды миллиардов раз меньше, чем сила самого чахлого комарика. А вот если наэлектризовать эти палочки - карандаши, уменьшить на один процент число электронов в стекле и увеличить на один процент число электронов в пластмассе — обратите внимание: всего на один процент! — то палочки будут притягиваться с такой силой, что смогут сдвинуть с места железнодорожный состав из многих миллиардов вагонов!

Почему же в наших опытах электрических сил едва хватало на то, чтобы подтянуть вверх легкие бумажки? Только потому, что натиранием мы нарушили электрическое равновесие у очень небольшого числа атомов.

И все же в использовании электрической энергии техника не пошла по пути машин с большими, сильно наэлектризованными деталями. В современных электрических машинах и установках всех типов работают детали, наэлектризованные самой природой, — мельчайшие частицы вещества, с которыми мы встретились на нашей экскурсии в мир атомов и молекул.