Дозиметр — прибор для измерения экспозиционной дозы, кермы фотонного излучения, поглощенной дозы и эквивалентной дозы фотонного или нейтронного излучения, а также измерение мощности перечисленных величин. Само измерение называется дозиметрией.
Доза и индикация дозиметра
Миллизиверт (мЗв) часто используется как мера дозы при медицинских диагностических процедурах (рентгеноскопия, рентгеновская компьютерная томография и т. п.).
Согласно постановлению главного государственного санитарного врача России за № 11 от 21 апреля 2006 г. «Об ограничении облучения населения при проведении рентгенорадиологических медицинских исследований», п. 3.2, необходимо «обеспечить соблюдение годовой эффективной дозы 1 мЗв при проведении профилактических медицинских рентгенологических исследований, в том числе при проведении диспансеризации». Среднемировая доза облучения от рентгенологических исследований, накопленная на душу населения за год, равна 0,4 мЗв, однако в странах с высоким уровнем доступа к медобслуживанию (более одного врача на 1000 человек населения) этот показатель растёт до 1,2 мЗв. Облучение от других техногенных источников значительно меньше: 0,005 мЗв от радионуклидов, оставшихся от атмосферных ядерных испытаний, 0,002 мЗв от Чернобыльской катастрофы, 0,0002 мЗв от ядерной энергетики.
Среднемировая доза облучения от естественных источников, накопленная на душу населения за год, равна 2,4 мЗв, с разбросом от 1 до 10 мЗв. Основные компоненты:
- 0,4 мЗв от космических лучей (от 0,3 до 1,0 мЗв, в зависимости от высоты над уровнем моря);
- 0,5 мЗв от внешнего гамма-излучения (от 0,3 до 0,6 мЗв, в зависимости от радионуклидного состава окружения — почвы, стройматериалов и т. п.);
- 1,2 мЗв внутреннего облучения от ингалируемых атмосферных радионуклидов, главным образом радона (от 0,2 до 10 мЗв, в зависимости от местной концентрации радона в воздухе);
- 0,3 мЗв внутреннего облучения от инкорпорированных радионуклидов (от 0,2 до 0,8 мЗв, в зависимости от радионуклидного состава пищевых продуктов и воды).
При однократном равномерном облучении всего тела и неоказании специализированной медицинской помощи смерть в результате острой лучевой болезни наступает в 50 % случаев:
- при дозе порядка 3—5 Гр из-за повреждения костного мозга в течение 30—60 суток;
- 10 ± 5 Гр из-за повреждения желудочно-кишечного тракта и лёгких в течение 10—20 суток;
- > 15 Гр из-за повреждения нервной системы в течение 1—5 суток.
В отличие от поглощенной дозы, нормируемые в радиационной безопасности эквивалентная и эффективная дозы не являются измеримыми на практике. Для их консервативной оценки введены так называемые операционные величины, в единицах измерения которых откалибровано оборудование радиационного контроля (дозиметры). В настоящее время стандартизированы и используются следующие операционные величины:
- амбиентный эквивалент дозы H*(10);
- направленный эквивалент дозы H'(0.07,Ω);
- индивидуальный эквивалент дозы, Hp(d).
Первые две величины используются при мониторинге среды, а третья при индивидуальной дозиметрии (например, с использованием персональных носимых дозиметров).
С помощью измеренных операционных величин можно консервативно оценить значение полученной эффективной дозы. Если значение операционной величины меньше установленных пределов, то никакого дополнительного пересчета при этом не требуется.
Ранее выпускавшиеся дозиметры могли быть откалиброваны в единицах максимальной эквивалентной дозы (Hмакс), показателя эквивалентной дозы (ПЭД), либо полевой эквивалентной дозы, кроме того использовалась величина экспозиционной дозы (X).
Описание бытовых дозиметров
Бытовые приборы, как правило, имеют световую и (или) звуковую сигнализацию и дисплей для отсчёта измерений. Размер и исполнение варьирует от наручного браслета до «карманного» исполнения. Время непрерывной работы от одной батареи от нескольких часов до нескольких месяцев.
Как правило, бытовые приборы не позволяют оценить дозу, полученную при контакте с нейтронными источниками. Оценка фотонного, α и β-излучения зависит от наличия дополнительных фильтров и характера используемых датчиков. Например, приборы сконструированные на датчике СБМ-20, и выполненные в сплошном пластиковом корпусе, настроены на измерение только одного вида ИИ - фотонного (жесткого γ-излучения)[9].
Диапазон измерения бытовых дозиметров, как правило, зависит от характера используемых в приборе датчиков. Например, для датчика СБМ-20 предел 4*103 имп/сек, где 60 имп/мкР пределом измерения будет ~66 мкР/сек вне зависимости от градуировки на экране. При подходе к пороговым значениям возникнет срыв детекции, что обусловлено образованием тлеющего разряда в детекторе. Значения мощности дозы на экране будут резко уменьшаться.
Составляющие компоненты
Дозиметр может включать в себя:
- один или несколько детекторов на разные типы излучения
- съемные фильтры для оценки структуры излучения
- систему индикации дозы
- счётное устройство
- контрольный источник ионизирующего излучения для калибровки детектора сцинтилляционного типа
Примером может служить химический дозиметр ИД-11 (алюмофосатное стекло, активированное серебром), регистрирующий воздействие гамма- и смешанного гамма-нейтронного излучения. Измерение зарегистрированной дозы производится с помощью измерительного устройства ИУ-1 в диапазоне от 10 до 1500 рад. Доза излучения суммируется при периодическом облучении и сохраняется в дозиметре в течение 12 месяцев. Масса ИД-11 равна 25 г. Масса ИУ-1 – 18 кг.
Подробнее о дозиметре «Терра — П» здесь.
Детекторами ионизирующих излучений (чувствительными элементами дозиметра, служащими для преобразования явлений, вызываемых ионизирующими излучениями в электрический или другой измеряемый сигнал) могут являться различные по устройству и принципам работы датчики:
- Газоразрядные детекторы ионизирующих излученийионизационная камера (прямопоказывающий индивидуальный дозиметр «ДКС-101» или «ДДГ-01Д»датчики Гейгера - Мюллера (например, «бета-1» для α,β,γ-излучения или «СБМ-20» для β,γ-излучения или СНМ-50 для нейтронного излучения)
- Сцинтилляционные детекторы и счетчики
- Полупроводниковые детекторы излучений
- Детекторы на основе алмаза
- Фотодиодные детекторы
- Интегрирующие детекторы для индивидуальной дозиметрии[12]ФотопленочныеКамерно-ионизационныеТермолюминесцентныеРадиофотолюминесцентныеЭлектретныеТрековые
В СССР бытовые дозиметры получили наибольшее распространение после Чернобыльской аварии 1986 года. До этого времени дозиметры использовались только в научных или военных целях.