Продолжаем изучать гибридные ИИ-системы. Давайте более детально узнаем, что же это такое. Так что сперва вспомним его общую схему:
Как видно из представленной диаграммы, гибридная искусственная интеллектуальная система представляет собой ни что иное, как универсальную кибернетическую машину, которая имеет три основных элемента: аффекторы, подсистему управления и эффекторы. При помощи аффекторов кибернетическая машина воспринимает сигналы окружающей среды, которые обрабатываются в подсистеме управления, сигналы из которой далее поступают в эффекторы, которые на окружающую среду воздействуют. Это общая схема любого автономного агента, поэтому гибридная искусственная интеллектуальная система одновременно является и интеллектуальным агентом, реализуя агентный подход.
Гибридная интеллектуальная система отличается тем, что её аффекторы (сенсоры, датчики) и эффекторы (исполнительные устройства) связаны с подсистемой управления и принятия решений через нейронные сети. Тем самым используются сильные стороны восходящего, или «грязного» подхода. Аффекторная нейронная сеть принимает очищенные сенсорами сигналы внешней среды и преобразует их в символы, которые подаются на вход универсальной машине вывода. Последняя осуществляет вывод на основе символьных знаний из своей базы знаний и выводит результат, который тоже представляется в виде символов. Тем самым реализуются сильные стороны нисходящего, или «чистого» подход. Символьный результат подаётся на вход моторной нейронной сети, которая преобразует высокоуровневые символы в конкретные сигналы управления исполнительными устройствами.
Кроме всего прочего внутри гибридной интеллектуальной системы должны быть реализованы контрольные связи от всех её элементов к сенсорам. Тем самым реализуются адаптационные механизмы, основанные на гомеостазе внутреннего состояния системы. Сенсоры фиксируют изменение внутреннего состояния каждой подсистемы, их элементов и комплексов, а в случае выхода контролируемых значений за пределы установленных гомеостатических интервалов подсистемой управления принимается решение, целью которого будет возврат изменённых показателей в установочный интервал.
Именно система с такой архитектурой при переходе через определённый порог сложности может считаться разумной. При этом разумность в этом смысле определяется как адекватное реагирование не только на стимулы внешней среды, но и на внутренние состояния, что также включает в себя постоянный мониторинг состояния собственной подсистемы управления, что называется «саморефлексией», которая и приводит к осознанию.
Так что теперь давайте рассмотрим все проблемные места технологии глубинного обучения, данные в оригинальной статье, с точки зрения гибридного подхода.