Найти тему
Nag.ru

Графен - на один шаг ближе к гибкой терагерцовой электронике

Около пяти лет назад фотоприемные приборы на основе графена вошли в терагерцовый диапазон из видимого и инфракрасного электромагнитного спектра. Это был довольно важный шаг, способный вывести всю современную электронику на качественно новый уровень. Терагерцовое излучение проникает сквозь различные материалы, на что не способны видимое и инфракрасное излучения. Это открывает ряд потенциальных применений в области медицины, контроле различных процессов и даже в интеллектуальных транспортных средствах (которые нам обещают подарить беспроводные сети следующего поколения – 5G).

-2

Терагерцовое излучение занимает в спектре электромагнитных волн промежуточное место между СВЧ- и ИК-излучением. Благодаря высокой частоте колебаний, оно может обеспечить еще более высокую скорость передачи данных по беспроводным сетям, а небольшая энергия квантов и хорошая проникающая способность делают его незаменимым инструментом для медицинской диагностики. Также, терагерцовые датчики могут быть использованы при досмотре людей и их багажа. Это возможно благодаря тому, что графеновый детектор может замерить количество отраженного от объекта терагерцового излучения, а после оцифровки результатов измерения, полученные данные могут быть преобразованы в изображение структуры сканируемого объекта. Терагерцовое излучение поглощается жидкостями и хорошо отражается от плотных объектов (костная ткань, металлы и пр.), благодаря чему можно легко использовать терагерцовое оборудование взамен рентгеновских аппаратов.  Здесь возникает ряд преимуществ по сравнению с обычным рентгеном, и наиболее важное заключается в том, что терагерцовое излучение относится к неионизирующему, что позволяет применять их везде, не оказывая при этом негативного воздействия на людей.

Долгое время практическое применение терагерцового излучения было затруднительным из-за отсутствия эффективных источников и детекторов для данного диапазона. Сейчас электронная техника терагерцового диапазона переживает период бурного развития. В исследовании, опубликованном в журнале Applied Physics Letters, исследователи  из Chalmers University в Швеции разработали полевой транзистор, созданный на гибкой пластиковой подложке, в которой канал между стоком и истоком сделан из графена. Получающееся в результате гибкое устройство может обнаруживать сигналы в диапазоне от 330 до 500 ГГц.

Команде из Chalmers University удалось создать устройство, которое сочетает в себе гибкость и функционал по обнаружению терагерцового излучения, что может позволить использовать его в IoT-устройствах с высокой пропускной способностью. В приведенном ниже видео вы можете увидеть несколько приложений, которые, по мнению исследователей, могут использовать предложенные детекторы.

Графеновый детектор работает как полевой транзистор, который может обнаруживать THz-излучение из-за своих нелинейных свойств. Это приводит к выпрямлению или преобразованию переменного тока, который генерируется входящим высокочастотным излучением. В результате между истоком и стоком появляется сигнал в виде напряжения постоянного тока, который меняется пропорционально мощности получаемого излучения в терагерцевом диапазоне. Поскольку отношение тока и напряжения нелинейно, применяемый сигнал переменного тока (даже при малой мощности) будет генерировать гармоники.

А вот так выглядит детектор терагерцового излучения, который разработала группа физиков из России, Японии и США:

-3

Ключевой особенностью, предложенного физиками варианта выполнения детектора, является использование механических, то есть подвижных, деталей для повышения чувствительности прибора. Предложенная конструкция также представляет собой полевой транзистор, затвор которого выполнен в виде гибкого графенового лепестка. Напомним, что ключевой особенностью графена является то, что он может быть выполнен с  наименьшей возможной толщиной в один атом и при этом обладает высокой прочностью и жесткостью:

-4

Достоинства графена заключаются не только в его уникальных механических свойствах, двумерный углерод еще является и хорошим проводником электрического тока и отличается высокой подвижностью носителей заряда. Сочетание механических и электрофизических характеристик графена обеспечит при взаимодействии с терагерцовым излучением сразу несколько положительных эффектов, которые позволят создать в будущем сверхпрочные гибкие и прозрачные гаджеты. Не так давно подобные вещи казались чем-то футуристичным, однако сейчас уже есть практические реализации подобных устройств:


Слева всего лишь концепт, а справа – реальная разработка Тайваньской компании Polytron Technologies
Слева всего лишь концепт, а справа – реальная разработка Тайваньской компании Polytron Technologies

Рассмотрим принцип работы терагерцового детектора. Вначале падающее электромагнитное излучение, попадая на детектор, входит в резонанс с колебаниями свободных носителей заряда в графене (этот эффект известен как плазменный резонанс – коллективные колебания электронов в металлах и полупроводниках). За счет этого возрастет амплитуда колебаний и, как следствие, увеличивается напряженность поля в пространстве между графеновой мембраной и отделенным от нее небольшим зазором каналом транзистора. Электрическое поле будет притягивать мембрану, причем величина силы притяжения будет меняться со временем пропорционально квадрату напряженности поля. 

-6

Если падающее на мембрану терагерцовое излучение модулировано, то в колебаниях поля будут присутствовать гармоники (синусоидальные колебания), соответствующие частоте модулирующего сигнала. Если частота модуляционной гармоники совпадет с частотой собственных колебаний мембраны, то возникает условие резонанса и амплитуда колебаний мембраны многократно возрастет; она начнет раскачиваться подобно мосту. Так как прочность графена достаточно высока, мембрана выдержит эти колебания без разрыва, и ее движение неизбежно скажется на электрических параметрах транзистора. За счет изменения электрической емкости между графеном и подложкой будет изменяться протекающий по цепи ток, и эти изменения можно будет легко обнаружить.

Это значит, что если есть возможность принимать модулированные сигналы, то детектор на основе графена сможет не только фиксировать наличие терагерцового излучения, но и принимать закодированную в сигнале информацию и передавать ее дальше для обработки. Поэтому если сейчас наблюдается тенденция увеличения частот в системах беспроводной связи, то электроника на основе графена будет лежать в основе работы беспроводных устройств следующего поколения.

Таким образом, графен позволит создавать высокочастотную электронику благодаря своим многообещающим электрическим свойствам, а механическая прочность этого материала позволит создавать "гибкие" гаджеты. Конечно, все же еще имеются некоторые технические проблемы, которые необходимо будет решить, прежде чем такое устройство будет внедрено в промышленное производство. Очевидно, что сейчас перед исследователями стоит задача в улучшении характеристик транзисторов на основе графена, а также в разработке различных типов электронных схем на основе этих транзисторов.

Наука
7 млн интересуются