Ласло Барабаши, которого иногда называют Эйнштейном ХХI века, в контексте непредсказуемости хода ЧМ 2018, давеча рекомендовал всем познакомиться с работой своего коллеги Луки Паппалардо.
Лука заинтриговал многих, написав у себя в Twitter следующее:
«Поражающий числом случайностей ЧМ 2018 ставит во главу угла вопрос — каково соотношение мастерства и удачи в футбольных выигрышах. И наше недавнее исследование дает ответ на этот вопрос».
https://goo.gl/B9HyJj
Рекомендация Барабаши и все возгоняющийся хайп ЧМ 2018 заставили меня тут же прочесть рекомендованную работу, как-то проскочившую мимо меня в прошлом году.
И честно сказать, был впечатлен.
Все вы видите в каждом матче разнообразную матчевую аналитику: процент владения мячом, точность передач, число ударов в створ ворот и т.д.
Но что если:
- собирать и мониторить не десяток показателей, а ВСЕ значимые события матча (передача, принятие передачи, удар, подкат, отбор мяча, его потеря, нарушение, борьба за мяч в воздухе и т.д.) для каждого игрока в привязке к координатам событий на поле и последствиям каждого из событий;
- а потом оцифровывать их: например, взять 10 млн. таких событий в 6 тыс. матчей, игранных в 2013–2016 гг 145тью клубами 6ти европейских национальных футбольных лиг;
- и запустить на этих Больших данных алгоритмы машинного обучения.
Что тогда получится?
Так и сделала команда под руководством Луки Паппалардо, чтобы получить фантастически интересные результаты о соотношении мастерства и удачи в футбольных выигрышах.
Для тех, у кого нет времени читать 29 страниц, скажу, что меня поразило больше всего.
✔️ Это даже не то, что натасканный на полученных Больших данных алгоритм машинного обучения, не зная результатов матчей, с высокой точностью рассчитал текущий уровень мастерства команд,
а также предсвказал рейтинги команд и места, занятые ими по итогам турниров национальных лиг.
✔️ Больше всего меня поразило намерение авторов, добавив к анализируемым данным кривые пространственно-временных перемещений игроков, натравить натасканные на Больших данных о прошлых играх алгоритмы машинного обучения на онлайн трекинг вживую идущих матчей.
Т.е. например, — вы смотрите матч Реала и Барселоны.
А на 10й минуте вам показывается матчевая аналитика.
И последней строчкой в ней написано: по расчетам Гугл-Футбол, с 95%ной вероятностью победит Барселона с, примерно, таким пояснением.
И вопрос теперь даже не в том, — кто после этого станет досматривать матч.
А в том, зачем вообще его начинать, если победителя можно с высокой вероятностью определить заранее, проанализировав текущий относительный уровень мастерства команд?
_________________________
Хотите читать подобные публикации? Подписывайтесь на мой канал в Телеграме, Medium, Яндекс-Дзене
Считаете, что это стоит прочесть и другим? Дайте им об этом знать, кликнув на иконку “понравилось”