Найти тему
RMNT.RU

Расчёт кровли: как посчитать угол наклона крыши, длину стропил и площадь кровельного материала

При проектировании стропил кровли частного дома нужно уметь правильно рассчитать угол наклона крыши. Как сориентироваться в различных единицах измерения, по каким формулам вести расчёт и как влияет угол наклона на ветровую и снеговую нагрузку крыши, мы и поговорим в этой статье.

Кровля частного дома, возводимого по индивидуальному проекту, может быть очень простой или удивительно причудливой. Угол уклона каждого ската зависит от архитектурного решения всего дома, наличия чердака или мансарды, используемого кровельного материала, климатической зоны, в которой располагается приусадебный участок. В компромиссе этих параметров нужно найти оптимальное решение, сочетающее прочность крыши с полезным использованием подкрышного пространства и внешним видом дома или комплекса построек.

-2

Единицы измерения угла наклона крыши

Угол наклона — это величина между горизонтальной частью конструкции, плитами или балками перекрытия, и поверхностью кровли или стропилами.

-3

В справочниках, СНиП, технической литературе встречаются различные единицы измерения углов:

  • градусы;
  • соотношение сторон;
  • проценты.

Ещё одна единица измерения углов — радиан — в таких расчётах не применяется.

Что такое градусы, все помнят из школьной программы. Соотношение сторон прямоугольного треугольника, который образован основанием — L, высотой — Н (см. на рисунок выше) и настилом крыши выражается, как Н:L. Если α = 45°, треугольник — равносторонний, и соотношение сторон (катетов) равно 1:1. В случае, когда соотношение не даёт чёткого представления о наклоне, говорят о проценте. Это то же отношение, но рассчитанное в долях с переводом в проценты. Например, при H = 2,25 м и L = 5,60 м:

  • 2,25 м / 5,60 м · 100 % = 40%

Цифровое выражение одних единиц через другие наглядно изображено на диаграмме ниже:

-4

Формулы для расчёта угла наклона крыши, длины стропил и площади покрытия кровельным материалом

Чтобы легко рассчитать размеры элементов крыши и стропильной системы, нужно вспомнить, как мы решали задачи с треугольниками в школе, пользуясь основными тригонометрическими функциями.

-5

Как это поможет в расчёте крыши? Разбиваем сложные элементы на простые прямоугольные треугольники и находим решение для каждого случая, пользуясь тригонометрическими функциями и теоремой Пифагора.

Проще всего рассчитать односкатную или двускатную крышу. Высота конька и пролёт — величины известные, угол и длина стропил определяются легко.

Чаще встречаются более сложные конфигурации.

-6

Например, нужно рассчитать длину стропил торцевой части вальмовой крыши, которая представляет собой равнобедренный треугольник. Из вершины треугольника опускаем перпендикуляр на основание и получаем прямоугольный треугольник, гипотенуза которого является средней линией торцевой части крыши. Зная ширину пролёта и высоту конька, из разбитой на элементарные треугольники конструкции можно найти угол наклона вальмы — α, угол наклона кровли — β и получить длину стропил треугольного и трапециевидного ската.

Формулы для расчёта (единицы измерения длин должны быть одинаковыми — м, см или мм — во всех расчётах, чтобы избежать путаницы):

-7
-8
-9
-10
-11

Внимание! Расчёт длин стропил по этим формулам не учитывает величину свеса.

Пример

Крыша — четырёхскатная, вальмовая. Высота конька (СМ) — 2,25 м, ширина пролёта (W/2) — 7,0 м, глубина наклона торцевой части крыши (MN) — 1,5 м.

-12

Получив значения sin(α) и tg(β), определить значение углов можно по таблице Брадиса. Полная и точная таблица с точностью до минуты представляет собой целую брошюру, а для грубых расчётов, которые в данном случае допустимы, можете воспользоваться небольшой таблицей значений.

-13

Для нашего примера:

  • sin(α) = 0,832, α = 56,2° (получено интерполяцией соседних значений для углов в 55° и 60°)
  • tg(β) = 0,643, β = 32,6°(получено интерполяцией соседних значений для углов в 30° и 35°)

Запомним эти цифры, они пригодятся нам при выборе материала.

Для расчёта количества кровельного материала потребуется определить площадь покрытия. Площадь ската двускатной крыши — прямоугольник. Его площадь — произведение сторон. Для нашего примера — вальмовой крыши — это сводится к определению площадей треугольника и трапеции.

-14

Для нашего примера площадь одного торцового треугольного ската при CN = 2,704 м и W/2 = 7,0 м (расчёт необходимо выполнить с учётом удлинения кровли за пределы стен, принимаем длину свеса — 0,5 м):

  • S = ((2,704 + 0,5) · (7,5 + 2 х 0,5)) / 2 = 13,62 м2

Площадь одного бокового трапециевидного ската при W = 12,0 м, Hс = 3,905 м (высота трапеции) и MN = 1,5 м:

  • Lк = W - 2 · MN = 9 м

Вычисляем площадь с учётом свесов:

  • S = (3,905 + 0,5) · ((12,0 + 2 х 0,5) + 9,0) / 2 = 48,56 м2

Суммарная площадь покрытия четырёх скатов:

  • SΣ = (13,62 + 48,46) · 2 = 124,16 м2

Рекомендации по наклону крыши в зависимости от назначения и материала

Неэксплуатируемая крыша может иметь минимальный угол наклона 2–7°, что обеспечивает невосприимчивость к ветровым нагрузкам. Для нормального схода снега угол лучше увеличить до 10°. Такие кровли распространены при строительстве хозяйственных построек, гаражей.

Если подкрышное пространство предполагается использовать в качестве чердака или мансарды, наклон одно- или двускатной крыши должен быть достаточно большим, иначе человек не сможет выпрямиться, а полезная площадь будет «съедена» стропильной системой. Поэтому целесообразно применить в таком случае ломаную крышу, например, мансардного типа. Минимальная высота потолков в таком помещении должна быть не менее 2,0 м, но желательно для комфортного пребывания — 2,5 м.

Варианты  обустройства мансарды: 1-2. Двухскатная крыша классическая. 3. Крыша с  переменным углом наклона. 4. Крыша с выносными консолями 
Варианты обустройства мансарды: 1-2. Двухскатная крыша классическая. 3. Крыша с переменным углом наклона. 4. Крыша с выносными консолями 

Принимая тот или иной материал в качестве кровельного, необходимо учитывать требования по минимальному и максимальному уклону. В противном случае, возможны проблемы, требующие ремонта крыши или всего дома.

-16
-17

Полученные в нашем примере углы наклона находятся в диапазоне 32–56°, что соответствует шиферной кровле, но не исключает и некоторые другие материалы.

Определение динамических нагрузок в зависимости от угла наклона

Конструкция дома должна выдерживать статические и динамические нагрузки от крыши. Статические нагрузки — это вес стропильной системы и кровельных материалов, а также оборудования подкрышного пространства. Это постоянная величина.

Динамические нагрузки — величины переменные, зависящие от климата и времени года. Чтобы верно рассчитать нагрузки с учётом их возможной сочетаемости (одновременности), рекомендуем изучить СП 20.13330.2011 (разделы 10, 11 и Приложение Ж). В полном объёме этот расчёт с учётом всех возможных при конкретном строительстве факторах в этой статье не может быть изложен.

-18

Ветровая нагрузка вычисляется с учётом районирования, а также особенностей расположения (подветренная, наветренная сторона) и угла наклона крыши, высоты здания. Основу расчёта составляет ветровое давление, средние значения которого зависит от региона строящегося дома. Остальные данные нужны для определения коэффициентов, корректирующих относительно постоянную для климатического района величину. Чем больше угол наклона, тем более серьёзные ветровые нагрузки испытывает крыша.

-20

Снеговая нагрузка, в отличие от ветровой, связана с углом наклона крыши противоположным образом: чем меньше угол, тем больше снега задерживается на кровле, тем ниже вероятность схождения снежного покрова без применения дополнительных средств, и тем большие нагрузки испытывает конструкция.

-21

Подходите к вопросу определения нагрузок серьёзно. Расчёт сечений, конструкции, а значит, надёжности и стоимости стропильной системы зависит от полученных значений. Если вы не уверены в своих силах, лучше заказать расчёт нагрузок у специалистов.

С подпиской рекламы не будет

Подключите Дзен Про за 159 ₽ в месяц